Abstract

Designation of services and devices of a home network is not user friendly, and mechanisms should enable a user to designate services and devices inside a home network using names.

In order to enable internal communications while the home network experiments Internet connectivity shortage, the naming service should be hosted on a device inside the home network. On the other hand, home networks devices have not been designed to handle heavy loads. As a result, hosting the naming service on such home network device, visible on the Internet exposes this device to resource exhaustion and other attacks, which could make the home network unreachable, and most probably would also affect the internal communications of the home network.

As result, home networks may prefer not serving the naming service for the Internet, but instead prefer outsourcing it to a third party. This document describes a mechanisms that enables the Home Network Authority (HNA) to outsource the naming service to the Outsourcing Infrastructure.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Draft Outsourcing Authoritative Naming Service May 2019

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 11, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Requirements notation ......................................... 3
2. Introduction .................................................. 3
3. Terminology ................................................... 4
4. Architecture Description ....................................... 6
   4.1. Architecture Overview ................................... 6
   4.2. Example: Homenet Zone ................................... 8
   4.3. Example: HNA necessary parameters for outsourcing ...... 10
5. Synchronization between HNA and the Synchronization Server .... 11
   5.1. Synchronization with a Hidden Primary .................... 12
   5.2. Securing Synchronization ................................. 13
   5.3. HNA Security Policies .................................... 14
6. DNSSEC compliant Homenet Architecture ........................ 14
   6.1. Zone Signing" ......................................... 15
   6.2. Secure Delegation" ..................................... 16
7. Handling Different Views ....................................... 17
   7.1. Misleading Reasons for Local Scope DNS Zone" ............ 17
   7.2. Consequences" ......................................... 18
   7.3. Guidance and Recommendations ............................. 19
   7.4. Homenet Reverse Zone .................................... 19
8. Renumbering .................................................... 19
   8.1. Hidden Primary .......................................... 20
   8.2. Synchronization Server ................................... 21
9. Privacy Considerations ........................................ 22
10. Security Considerations ....................................... 23
10.1. Names are less secure than IP addresses  ........... 23
10.2. Names are less volatile than IP addresses  ........... 23
10.3. DNS Reflection Attacks  .............................. 24
10.4. "Reflection Attack involving the Hidden Primary ..... 24
10.5. Reflection Attacks involving the Synchronization Server 25
10.6. Reflection Attacks involving the Public Authoritative Servers ............................. 26
10.7. Flooding Attack  ..................................... 26
10.8. Replay Attack  ....................................... 27
11. IANA Considerations  ................................. 28
12. Acknowledgment ......................................... 28
13. References ................................................ 28
   13.1. Normative References  .............................. 28
   13.2. Informative References  ............................ 31
Authors' Addresses ........................................... 32

1. Requirements notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Introduction

IPv6 provides global end to end IP reachability. End users prefer to use names instead of long and complex IPv6 addresses when accessing services hosted in the home network.

Customer Edge Routers and other Customer Premises Equipment (CPEs) are already providing IPv6 connectivity to the home network, and generally provide IPv6 addresses or prefixes to the nodes of the home network. In addition, [RFC7368] recommends that home networks be resilient to connectivity disruption from the ISP. This could be achieved by a dedicated device inside the home network that builds, serves or manage the Homenet Zone, thus providing bindings between names and IP addresses.

CPEs are of course good candidates to manage the binding between names and IP addresses of nodes. However, this could also be performed by another device in the home network that is not a CPE. In addition, a given home network may have multiple nodes that may implement this functionality. Since management of the Homenet Zone involves DNS specific mechanisms that cannot be distributed (primary server), when multiple nodes can potentially manage the Homenet Zone, a single node needs to be selected. This selected node is designated as the Homenet Naming Authority (HNA).
CPEs, Homenet Naming Authority, as well as home network devices are usually low powered devices not designed for terminating heavy traffic. As a result, hosting an authoritative DNS service on the Internet may expose the home network to resource exhaustion and other attacks. This may isolate the home network from the Internet and also impact the services hosted by the such an home network device, thus affecting overall home network communication.

In order to avoid resource exhaustion and other attacks, this document describes an architecture that outsources the authoritative naming service of the home network. More specifically, the Homenet Naming Authority builds the Homenet Zone and outsources it to an Outsourcing Infrastructure. The Outsourcing Infrastructure in in charge of publishing the corresponding Public Homenet Zone on the Internet.

Section 4.1 provides an architecture description that describes the relation between the Homenet Naming Authority and the Outsourcing Architecture. In order to keep the Public Homenet Zone up-to-date Section 5 describes how the Homenet Zone and the Public Homenet Zone can be synchronized. The proposed architecture aims at deploying DNSSEC, and the Public Homenet Zone is expected to be signed with a secure delegation. The zone signing and secure delegation may be performed either by the Homenet Naming Authority or by the Outsourcing Infrastructure. Section 6 discusses these two alternatives. Section 7 discusses the consequences of publishing multiple representations of the same zone also commonly designated as views. This section provides guidance to limit the risks associated with multiple views. Section 7.4 discusses management of the reverse zone. Section 8 discusses how renumbering should be handled. Finally, Section 9 and Section 10 respectively discuss privacy and security considerations when outsourcing the Homenet Zone.

3. Terminology

- Customer Premises Equipment: (CPE) is a router providing connectivity to the home network.

- Homenet Naming Authority: (HNA) is a home network node responsible to manage the Homenet Zone. This includes building the Homenet Zone, as well as managing the distribution of that Homenet Zone through the Outsourcing Infrastructure.

- Registered Homenet Domain: is the Domain Name associated to the home network.

- Homenet Zone: is the DNS zone associated with the home network. It is designated by its Registered Homenet Domain. This zone is
built by the HNA and contains the bindings between names and IP addresses of the nodes in the home network. The HNA synchronizes the Homenet Zone with the Synchronization Server via a hidden primary / secondary architecture. The Outsourcing Infrastructure may process the Homenet Zone - for example providing DNSSEC signing - to generate the Public Homenet Zone. This Public Homenet Zone is then transmitted to the Public Authoritative Server(s) that publish it on the Internet.

- **Public Homenet Zone:** is the public version of the Homenet Zone. It is expected to be signed with DNSSEC. It is hosted by the Public Authoritative Server(s), which are authoritative for this zone. The Public Homenet Zone and the Homenet Zone might be different. For example some names might not become reachable from the Internet, and thus not be hosted in the Public Homenet Zone. Another example of difference may also occur when the Public Homenet Zone is signed whereas the Homenet Zone is not signed.

- **Outsourcing Infrastructure:** is the combination of the Synchronization Server and the Public Authoritative Server(s).

- **Public Authoritative Servers:** are the authoritative name servers hosting the Public Homenet Zone. Name resolution requests for the Homenet Domain are sent to these servers. For resiliency the Public Homenet Zone SHOULD be hosted on multiple servers.

- **Synchronization Server:** is the server with which the HNA synchronizes the Homenet Zone. The Synchronization Server is configured as a secondary and the HNA acts as primary. There MAY be multiple Synchronization Servers, but the text assumes a single server. In addition, the text assumes the Synchronization Server is a separate entity. This is not a requirement, and when the HNA signs the zone, the synchronization function might also be operated by the Public Authoritative Servers.

- **Homenet Reverse Zone:** The reverse zone file associated with the Homenet Zone.

- **Reverse Public Authoritative Servers:** are the authoritative name server(s) hosting the Public Homenet Reverse Zone. Queries for reverse resolution of the Homenet Domain are sent to this server. Similarly to Public Authoritative Servers, for resiliency, the Homenet Reverse Zone SHOULD be hosted on multiple servers.

- **Reverse Synchronization Server:** is the server with which the HNA synchronizes the Homenet Reverse Zone. It is configured as a secondary and the HNA acts as primary. There MAY be multiple Reverse Synchronization Servers, but the text assumes a single
server. In addition, the text assumes the Reverse Synchronization Server is a separate entity. This is not a requirement, and when the HNA signs the zone, the synchronization function might also be operated by the Reverse Public Authoritative Servers.

- Hidden Primary: designates the primary server of the HNA, that synchronizes the Homenet Zone with the Synchronization Server. A primary / secondary architecture is used between the HNA and the Synchronization Server. The hidden primary is not expected to serve end user queries for the Homenet Zone as a regular primary server would. The hidden primary is only known to its associated Synchronization Server.

### 4. Architecture Description

Architecture Description This section describes the architecture for outsourcing the authoritative naming service from the HNA to the Outsourcing Infrastructure. Section 4.1 describes the architecture, Section 4.2 and Section 4.3 illustrate this architecture and shows how the Homenet Zone should be built by the HNA. It also lists the necessary parameters the HNA needs to be able to outsource the authoritative naming service. These two sections are informational and non-normative.

#### 4.1. Architecture Overview

Figure 1 provides an overview of the architecture.

The home network is designated by the Registered Homenet Domain Name - example.com in Figure 1. The HNA builds the Homenet Zone associated with the home network. How the Homenet Zone is built is out of the scope of this document. The HNA may host or interact with multiple services to determine name-to-address mappings, such as a web GUI, DHCP [RFC6644] or mDNS [RFC6762]. These services may coexist and may be used to populate the Homenet Zone. This document assumes the Homenet Zone has been populated with domain names that are intended to be publicly published and that are publicly reachable. More specifically, names associated with services or devices that are not expected to be reachable from outside the home network or names bound to non-globally reachable IP addresses MUST NOT be part of the Homenet Zone.

Once the Homenet Zone has been built, the HNA does not host an authoritative naming service, but instead outsources it to the Outsourcing Infrastructure. The Outsourcing Infrastructure takes the Homenet Zone as an input and publishes the Public Homenet Zone. If the HNA does not sign the Homenet Zone, the Outsourcing Infrastructure may instead sign it on behalf of the HNA. Figure 1
provides a more detailed description of the Outsourcing Infrastructure, but overall, it is expected that the HNA provides the Homenet Zone. Then the Public Homenet Zone is derived from the Homenet Zone and published on the Internet.

As a result, DNS queries from the DNS resolvers on the Internet are answered by the Outsourcing Infrastructure and do not reach the HNA. Figure 1 illustrates the case of the resolution of node1.example.com.

![Diagram of Homenet Naming Architecture Description]

Figure 1: Homenet Naming Architecture Description

The Outsourcing Infrastructure is described in Figure 2. The Synchronization Server receives the Homenet Zone as an input. The received zone may be transformed to output the Public Homenet Zone. Various operations may be performed here, however this document only considers zone signing as a potential operation. This should occur only when the HNA outsources this operation to the Synchronization Server. On the other hand, if the HNA signs the Homenet Zone itself, the zone would be collected by the Synchronization Server and directly transferred to the Public Authoritative Server(s). These policies are discussed and detailed in Section 6 and Section 7.
4.2. Example: Homenet Zone

This section is not normative and intends to illustrate how the HNA builds the Homenet Zone.

As depicted in Figure 1 and Figure 2, the Public Homenet Zone is hosted on the Public Authoritative Server(s), whereas the Homenet Zone is hosted on the HNA. Motivations for keeping these two zones identical are detailed in Section 7, and this section considers that the HNA builds the zone that will be effectively published on the Public Authoritative Server(s). In other words "Homenet to Public Zone transformation" is the identity also commonly designated as "no operation" (NOP).

In that case, the Homenet Zone should configure its Name Server RRset (NS) and Start of Authority (SOA) with the values associated with the Public Authoritative Server(s). This is illustrated in Figure 3. public.primary.example.net is the FQDN of the Public Authoritative Server(s), and IP1, IP2, IP3, IP4 are the associated IP addresses. Then the HNA should add the additional new nodes that enter the home network, remove those that should be removed, and sign the Homenet Zone.
$ORIGIN example.com
$TTL 1h

@ IN SOA public.primary.example.net
    hostmaster.example.com. (2013120710 ; serial number of this zone file
    1d ; secondary refresh
    2h ; secondary retry time in case of a problem
    4w ; secondary expiration time
    1h ; maximum caching time in case of failed ; lookups)

@ NS public.authoritative.servers.example.net

public.primary.example.net A @IP1
public.primary.example.example.net A @IP2
public.primary.example.net AAAA @IP3
public.primary.example.net AAAA @IP4

Figure 3: Homenet Zone

The SOA RRset is defined in [RFC1033], [RFC1035] and [RFC2308]. This
SOA is specific, as it is used for the synchronization between the
Hidden Primary and the Synchronization Server and published on the
DNS Public Authoritative Server(s).

- MNAME: indicates the primary. In our case the zone is published
  on the Public Authoritative Server(s), and its name MUST be
  included. If multiple Public Authoritative Server(s) are
  involved, one of them MUST be chosen. More specifically, the HNA
  MUST NOT include the name of the Hidden Primary.

- RNAME: indicates the email address to reach the administrator.
  [RFC2142] recommends using hostmaster@domain and replacing the '@'
  sign by '.'.

- REFRESH and RETRY: indicate respectively in seconds how often
  secondaries need to check the primary, and the time between two
  refresh when a refresh has failed. Default values indicated by
  [RFC1033] are 3600 (1 hour) for refresh and 600 (10 minutes) for
  retry. This value might be too long for highly dynamic content.
  However, the Public Authoritative Server(s) and the HNA are
  expected to implement NOTIFY [RFC1996]. So whilst shorter refresh
timers might increase the bandwidth usage for secondaries hosting
large number of zones, it will have little practical impact on the
elapsed time required to achieve synchronization between the
Outsourcing Infrastructure and the Hidden Master. As a result, the default values are acceptable.

- **EXPIRE**: is the upper limit data SHOULD be kept in absence of refresh. The default value indicated by [RFC1033] is 3600000 (approx. 42 days). In home network architectures, the HNA provides both the DNS synchronization and the access to the home network. This device may be plugged and unplugged by the end user without notification, thus we recommend a long expiry timer.

- **MINIMUM**: indicates the minimum TTL. The default value indicated by [RFC1033] is 86400 (1 day). For home network, this value MAY be reduced, and 3600 (1 hour) seems more appropriate.

<<!-- ## Considerations on multiple Registered Homenet Domain Names are left for future versions When multiple Registered Homenet Domains are used -like example.com, example.net, example.org, a DNS Homenet Zone file per Registered Homenet Domain SHOULD be generated. In order to synchronize the zone contents, the HNA may provide all bindings in each zone files. As a result, any update MUST be performed on all zone files, i.e. for all Registered Homenet Domains. To limit the updates when multiple Registered Homenet Domains are involved, the HNA MAY fill all bindings in a specific zone file and redirect all other zones to that zone. This can be achieved with redirecting mechanisms like CNAME {{RFC2181}}, {{RFC1034}}, DNAME {{RFC6672}} or CNAME+DNAME {{I-D.sury-dnsext-cname-dname}}. This is an implementation issue to determine whether redirection mechanisms MAY be preferred for large Homenet Zones, or when the number of Registered Homenet Domain becomes quite large. -->>

4.3. Example: HNA necessary parameters for outsourcing

This section specifies the various parameters required by the HNA to configure the naming architecture of this document. This section is informational, and is intended to clarify the information handled by the HNA and the various settings to be done.

Synchronization Server may be configured with the following parameters. These parameters are necessary to establish a secure channel between the HNA and the Synchronization Server as well as to specify the DNS zone that is in the scope of the communication:

- **Synchronization Server**: The associated FQDNs or IP addresses of the Synchronization Server. IP addresses are optional and the FQDN is sufficient. To secure the binding name and IP addresses, a DNSSEC exchange is required. Otherwise, the IP addresses should be entered manually.
Setting the Homenet Zone requires the following information.

- Registered Homenet Domain: The Domain Name of the zone. Multiple Registered Homenet Domains may be provided. This will generate the creation of multiple Public Homenet Zones.

- Public Authoritative Server(s): The Public Authoritative Server(s) associated with the Registered Homenet Domain. Multiple Public Authoritative Server(s) may be provided.

5. Synchronization between HNA and the Synchronization Server

The Homenet Reverse Zone and the Homenet Zone MAY be updated either with DNS UPDATE [RFC2136] or using a primary / secondary synchronization. The primary / secondary mechanism is preferred as it scales better and avoids DoS attacks: First the primary notifies the secondary that the zone must be updated and leaves the secondary to proceed with the update when possible. Then, a NOTIFY message is sent by the primary, which is a small packet that is less likely to load the secondary. Finally, the AXFR query performed by the secondary is a small packet sent over TCP (section 4.2 [RFC5936]), which mitigates reflection attacks using a forged NOTIFY. On the other hand, DNS UPDATE (which can be transported over UDP), requires
more processing than a NOTIFY, and does not allow the server to perform asynchronous updates.

This document RECOMMENDS use of a primary / secondary mechanism instead of the use of DNS UPDATE. This section details the primary / secondary mechanism.

5.1. Synchronization with a Hidden Primary

Uploading and dynamically updating the zone file on the Synchronization Server can be seen as zone provisioning between the HNA (Hidden Primary) and the Synchronization Server (Secondary Server). This can be handled either in band or out of band.

Note that there is no standard way to distribute a DNS primary between multiple devices. As a result, if multiple devices are candidate for hosting the Hidden Primary, some specific mechanisms should be designed so the home network only selects a single HNA for the Hidden Primary. Selection mechanisms based on HNCP [RFC7788] are good candidates.

The Synchronization Server is configured as a secondary for the Homnet Domain Name. This secondary configuration has been previously agreed between the end user and the provider of the Synchronization Server. In order to set the primary / secondary architecture, the HNA acts as a Hidden Primary Server, which is a regular authoritative DNS Server listening on the WAN interface.

The Hidden Primary Server SHOULD accept SOA [RFC1033], AXFR [RFC1034], and IXFR [RFC1995] queries from its configured secondary DNS server(s). The Hidden Primary Server SHOULD send NOTIFY messages [RFC1996] in order to update Public DNS server zones as updates occur. Because, the Homnet Zones are likely to be small, the HNA MUST implement AXFR and SHOULD implement IXFR.

Hidden Primary Server differs from a regular authoritative server for the home network by:

- Interface Binding: the Hidden Primary Server listens on the WAN Interface, whereas a regular authoritative server for the home network would listen on the home network interface.

- Limited exchanges: the purpose of the Hidden Primary Server is to synchronize with the Synchronization Server, not to serve any zones to end users. As a result, exchanges are performed with specific nodes (the Synchronization Server). Further, exchange types are limited. The only legitimate exchanges are: NOTIFY initiated by the Hidden Primary and IXFR or AXFR exchanges.
initiated by the Synchronization Server. On the other hand, regular authoritative servers would respond to any hosts, and any DNS query would be processed. The HNA SHOULD filter IXFR/AXFR traffic and drop traffic not initiated by the Synchronization Server. The HNA MUST listen for DNS on TCP and UDP and MUST at least allow SOA lookups of the Homenet Zone.

5.2. Securing Synchronization

Exchange between the Synchronization Server and the HNA MUST be secured, at least for integrity protection and for authentication.

TSIG [RFC2845] or SIG(0) [RFC2931] MAY be used to secure the DNS communications between the HNA and the Synchronization Server. TSIG uses a symmetric key which can be managed by TKEY [RFC2930]. Management of the key involved in SIG(0) is performed through zone updates. How keys are rolled over with SIG(0) is out-of-scope of this document. The advantage of these mechanisms is that they are only associated with the DNS application. Not relying on shared libraries eases testing and integration. On the other hand, using TSIG, TKEY or SIG(0) requires these mechanisms to be implemented on the HNA, which adds code and complexity. Another disadvantage is that TKEY does not provide authentication mechanisms.

Protocols like TLS [RFC5246] / DTLS [RFC6347] MAY be used to secure the transactions between the Synchronization Server and the HNA. The advantage of TLS/DTLS is that this technology is widely deployed, and most of the devices already embed TLS/DTLS libraries, possibly also taking advantage of hardware acceleration. Further, TLS/DTLS provides authentication facilities and can use certificates to authenticate the Synchronization Server and the HNA. On the other hand, using TLS/DTLS requires implementing DNS exchanges over TLS/DTLS, as well as a new service port. This document therefore does NOT RECOMMEND this option.

IPsec [RFC4301] IKEv2 [RFC7296] MAY also be used to secure transactions between the HNA and the Synchronization Server. Similarly to TLS/DTLS, most HNAs already embed an IPsec stack, and IKEv2 supports multiple authentication mechanisms via the EAP framework. In addition, IPsec can be used to protect DNS exchanges between the HNA and the Synchronization Server without any modifications of the DNS server or client. DNS integration over IPsec only requires an additional security policy in the Security Policy Database (SPD). One disadvantage of IPsec is that NATs and firewall traversal may be problematic. However, in our case, the HNA is connected to the Internet, and IPsec communication between the HNA and the Synchronization Server should not be impacted by middle boxes.
How the PSK can be used by any of the TSIG, TLS/DTLS or IPsec protocols: Authentication based on certificates implies a mutual authentication and thus requires the HNA to manage a private key, a public key, or certificates, as well as Certificate Authorities. This adds complexity to the configuration especially on the HNA side. For this reason, we RECOMMEND that the HNA MAY use PSK or certificate base authentication, and that the Synchronization Server MUST support PSK and certificate based authentication.

Note also that authentication of message exchanges between the HNA and the Synchronization Server SHOULD NOT use the external IP address of the HNA to index the appropriate keys. As detailed in Section 8, the IP addresses of the Synchronization Server and the Hidden Primary are subject to change, for example while the network is being renumbered. This means that the necessary keys to authenticate transaction SHOULD NOT be indexed using the IP address, and SHOULD be resilient to IP address changes.

5.3. HNA Security Policies

This section details security policies related to the Hidden Primary / Secondary synchronization.

The Hidden Primary, as described in this document SHOULD drop any queries from the home network. This could be implemented via port binding and/or firewall rules. The precise mechanism deployed is out of scope of this document. The Hidden Primary SHOULD drop any DNS queries arriving on the WAN interface that are not issued from the Synchronization Server. The Hidden Primary SHOULD drop any outgoing packets other than DNS NOTIFY query, SOA response, IXFR response or AXFR responses. The Hidden Primary SHOULD drop any incoming packets other than DNS NOTIFY response, SOA query, IXFR query or AXFR query. The Hidden Primary SHOULD drop any non protected IXFR or AXFR exchange, depending on how the synchronization is secured.

6. DNSSEC compliant Homenet Architecture

[RFC7368] in Section 3.7.3 recommends DNSSEC to be deployed on both the authoritative server and the resolver. The resolver side is out of scope of this document, and only the authoritative part of the server is considered.
Deploying DNSSEC requires signing the zone and configuring a secure delegation. As described in Section 4.1, signing can be performed either by the HNA or by the Outsourcing Infrastructure. Section 6.1 details the implications of these two alternatives. Similarly, the secure delegation can be performed by the HNA or by the Outsourcing Infrastructure. Section 6.2 discusses these two alternatives.

6.1. Zone Signing

This section discusses the pros and cons when zone signing is performed by the HNA or by the Outsourcing Infrastructure. It is RECOMMENDED that the HNA signs the zone unless there is a strong argument against this, such as a HNA that is not capable of signing the zone. In that case zone signing MAY be performed by the Outsourcing Infrastructure on behalf of the HNA.

Reasons for signing the zone by the HNA are:

1) Keeping the Homenet Zone and the Public Homenet Zone equal to securely optimize DNS resolution. As the Public Zone is signed with DNSSEC, RRsets are authenticated, and thus DNS responses can be validated even though they are not provided by the authoritative server. This provides the HNA the ability to respond on behalf of the Public Authoritative Server(s). This could be useful for example if, in the future, the HNA announces to the home network that the HNA can act as a local authoritative primary or equivalent for the Homenet Zone. Currently the HNA is not expected to receive authoritative DNS queries, as its IP address is not mentioned in the Public Homenet Zone. On the other hand most HNAs host a resolving function, and could be configured to perform a local lookup to the Homenet Zone instead of initiating a DNS exchange with the Public Authoritative Server(s). Note that outsourcing the zone signing operation means that all DNSSEC queries SHOULD be cached to perform a local lookup, otherwise a resolution with the Public Authoritative Server(s) would be performed.

2) Keeping the Homenet Zone and the Public Homenet Zone equal to securely address the connectivity disruption independence detailed in [RFC7368] section 4.4.1 and 3.7.5. As local lookups are possible in case of network disruption, communications within the home network can still rely on the DNSSEC service. Note that outsourcing the zone signing operation does not address connectivity disruption independence with DNSSEC. Instead local lookup would provide DNS as opposed to DNSSEC responses provided by the Public Authoritative Server(s).
3) Keeping the Homnet Zone and the Public Homnet Zone equal to guarantee coherence between DNS responses. Using a unique zone is one way to guarantee uniqueness of the responses among servers and places. Issues generated by different views are discussed in more details in Section 7.

4) Privacy and Integrity of the DNSSEC Homnet Zone are better guaranteed. When the Zone is signed by the HNA, it makes modification of the DNS data - for example for flow redirection - impossible. As a result, signing the Homnet Zone by the HNA provides better protection for end user privacy.

Reasons for signing the zone by the Outsourcing Infrastructure are:

1) The HNA may not be capable of signing the zone, most likely because its firmware does not support this function. However this reason is expected to become less and less valid over time.

2) Outsourcing DNSSEC management operations. Management operations involve key roll-over, which can be performed automatically by the HNA and transparently for the end user. Avoiding DNSSEC management is mostly motivated by bad software implementations.

3) Reducing the impact of HNA replacement on the Public Homnet Zone. Unless the HNA private keys can be extracted and stored off-device, HNA hardware replacement will result in an emergency key roll-over. This can be mitigated by using relatively small TTLs.

4) Reducing configuration impact on the end user. Unless there are zero configuration mechanisms in place to provide credentials between the new HNA and the Synchronization Server, authentication associations between the HNA and the Synchronization Server would need to be re-configured. As HNA replacement is not expected to happen regularly, end users may not be at ease with such configuration settings. However, mechanisms as described in [I-D.ietf-homenet-naming-architecture-dhc-options] use DHCP Options to outsource the configuration and avoid this issue.

5) The Outsourcing Infrastructure is more likely to handle private keys more securely than the HNA. However, having all private keys in one place may also nullify that benefit.

6.2. Secure Delegation"

Secure delegation is achieved only if the DS RRset is properly set in the parent zone. Secure delegation can be performed by the HNA or the Outsourcing Infrastructures (that is the Synchronization Server or the Public Authoritative Server(s)).
The DS RRset can be updated manually with nsupdate for example. This requires the HNA or the Outsourcing Infrastructure to be authenticated by the DNS server hosting the parent of the Public Homenet Zone. Such a trust channel between the HNA and the parent DNS server may be hard to maintain with HNAs, and thus may be easier to establish with the Outsourcing Infrastructure. In fact, the Public Authoritative Server(s) may use Automating DNSSEC Delegation Trust Maintenance [RFC7344].

7. Handling Different Views

The Homenet Zone provides information about the home network. Some users may be tempted to have provide responses dependent on the origin of the DNS query. More specifically, some users may be tempted to provide a different view for DNS queries originating from the home network and for DNS queries coming from the Internet. Each view could then be associated with a dedicated Homenet Zone.

<!--Regarding {{fig-naming-arch}}, an example of an implementation of two distinct view could be the Homenet Zone that describes the homenet view and the Public Homenet Zone that contains the Internet view, with these two zones being different.-->

Note that this document does not specify how DNS queries originating from the home network are addressed to the Homenet Zone. This could be done via hosting the DNS resolver on the HNA for example.

This section is not normative. Section 7.1 details why some nodes may only be reachable from the home network and not from the global Internet. Section 7.2 briefly describes the consequences of having distinct views such as a "home network view" and an "Internet view". Finally, Section 7.3 provides guidance on how to resolve names that are only significant in the home network, without creating different views.

7.1. Misleading Reasons for Local Scope DNS Zone

The motivation for supporting different views is to provide different answers dependent on the origin of the DNS query, for reasons such as:

1: An end user may want to have services not published on the Internet. Services like the HNA administration interface that provides the GUI to administer your HNA might not seem advisable to publish on the Internet. Similarly, services like the mapper that registers the devices of your home network may also not be desirable to be published on the Internet. In both cases, these services should only be known or used by the network administrator. To
restrict the access of such services, the home network administrator may choose to publish these pieces of information only within the home network, where it might be assumed that the users are more trusted than on the Internet. Even though this assumption may not be valid, at least this may reduce the surface of any attack.

2: Services within the home network may be reachable using non global IP addresses. IPv4 and NAT may be one reason. On the other hand IPv6 may favor link-local or site-local IP addresses. These IP addresses are not significant outside the boundaries of the home network. As a result, they MAY be published in the home network view, and SHOULD NOT be published in the Public Homenet Zone.

7.2. Consequences"

Enabling different views leads to a non-coherent naming system. Depending on where resolution is performed, some services will not be available. This may be especially inconvenient with devices with multiple interfaces that are attached both to the Internet via a 3G/4G interface and to the home network via a WLAN interface. Devices may also cache the results of name resolution, and these cached entries may no longer be valid if a mobile device moves between a homenet connection and an internet connection e.g. a device temporarily loses wifi signal and switches to 3G.

Regarding local-scope IP addresses, such devices may end up with poor connectivity. Suppose, for example, that DNS resolution is performed via the WLAN interface attached to the HNA, and the response provides local-scope IP addresses, but the communication is initiated on the 3G/4G interface. Communications with local-scope addresses will be unreachable on the Internet, thus aborting the communication. The same situation occurs if a device is flip / flopping between various WLAN networks.

Regarding DNSSEC, if the HNA does not sign the Homenet Zone and outsources the signing process, the two views are different, because one is protected with DNSSEC whereas the other is not. Devices with multiple interfaces will have difficulty securing the naming resolution, as responses originating from the home network may not be signed.

For devices with all its interfaces attached to a single administrative domain, that is to say the home network, or the Internet. Incoherence between DNS responses may still also occur if the device is able to perform DNS resolutions both using the DNS resolving server of the home network, or one of the ISP. DNS resolution performed via the HNA or the ISP resolver may be different than those performed over the Internet.
7.3. Guidance and Recommendations

As documented in Section 7.2, it is RECOMMENDED to avoid different views. If network administrators choose to implement multiple views, impacts on devices’ resolution SHOULD be evaluated.

As a consequence, the Homenet Zone is expected to be an exact copy of the Public Homenet Zone. As a result, services that are not expected to be published on the Internet SHOULD NOT be part of the Homenet Zone, local-scope addresses SHOULD NOT be part of the Homenet Zone, and when possible, the HNA SHOULD sign the Homenet Zone.

The Homenet Zone is expected to host public information only. It is not the scope of the DNS service to define local home network boundaries. Instead, local scope information is expected to be provided to the home network using local scope naming services. mDNS [RFC6762] DNS-SD [RFC6763] are two examples of these services. Currently mDNS is limited to a single link network. However, future protocols are expected to leverage this constraint as pointed out in [RFC7558].

7.4. Homenet Reverse Zone

This section is focused on the Homenet Reverse Zone. Firstly, all considerations for the Homenet Zone apply to the Homenet Reverse Zone. The main difference between the Homenet Reverse Zone and the Homenet Zone is that the parent zone of the Homenet Reverse Zone is most likely managed by the ISP. As the ISP also provides the IP prefix to the HNA, it may be able to authenticate the HNA using mechanisms outside the scope of this document e.g. the physical attachment point to the ISP network. If the Reverse Synchronization Server is managed by the ISP, credentials to authenticate the HNA for the zone synchronization may be set automatically and transparently to the end user. [I-D.ietf-homenet-naming-architecture-dhc-options] describes how automatic configuration may be performed.

With IPv6, the domain space for IP addresses is so large that reverse zone may be confronted with scalability issues. How the reverse zone is generated is out of scope of this document. [I-D.howard-dnsop-ip6rdns] provides guidance on how to address scalability issues.

8. Renumbering

This section details how renumbering is handled by the Hidden Primary server or the Synchronization Server. Both types of renumbering are discussed i.e. "make-before-break" and "break-before-make".
In the make-before-break renumbering scenario, the new prefix is advertised, the network is configured to prepare the transition to the new prefix. During a period of time, the two prefixes old and new coexist, before the old prefix is completely removed. In the break-before-make renumbering scenario, the new prefix is advertised making the old prefix obsolete.

Renumbering has been extensively described in [RFC4192] and analyzed in [RFC7010] and the reader is expected to be familiar with them before reading this section.

8.1. Hidden Primary

In a renumbering scenario, the Hidden Primary is informed it is being renumbered. In most cases, this occurs because the whole home network is being renumbered. As a result, the Homenet Zone will also be updated. Although the new and old IP addresses may be stored in the Homenet Zone, we recommend that only the newly reachable IP addresses be published.

To avoid reachability disruption, IP connectivity information provided by the DNS SHOULD be coherent with the IP plane. In our case, this means the old IP address SHOULD NOT be provided via the DNS when it is not reachable anymore. Let for example TTL be the TTL associated with a RRset of the Homenet Zone, it may be cached for TTL seconds. Let $T_{NEW}$ be the time the new IP address replaces the old IP address in the Homenet Zone, and $T_{OLD\_UNREACHABLE}$ the time the old IP is not reachable anymore.

In the case of the make-before-break, seamless reachability is provided as long as $T_{OLD\_UNREACHABLE} - T_{NEW} > 2 * TTL$. If this is not satisfied, then devices associated with the old IP address in the home network may become unreachable for $2 * TTL - (T_{OLD\_UNREACHABLE} - T_{NEW})$. In the case of a break-before-make, $T_{OLD\_UNREACHABLE} = T_{NEW}$, and the device may become unreachable up to $2 * TTL$.

Once the Homenet Zone file has been updated on the Hidden Primary, the Hidden Primary needs to inform the Outsourcing Infrastructure that the Homenet Zone has been updated and that the IP address to use to retrieve the updated zone has also been updated. Both notifications are performed using regular DNS exchanges. Mechanisms to update an IP address provided by lower layers with protocols like SCTP [RFC4960], MOBIKE [RFC4555] are not considered in this document.

The Hidden Primary SHOULD inform the Synchronization Server that the Homenet Zone has been updated by sending a NOTIFY payload with the new IP address. In addition, this NOTIFY payload SHOULD be authenticated using SIG(0) or TSIG. When the Synchronization Server
receives the NOTIFY payload, it MUST authenticate it. Note that the cryptographic key used for the authentication SHOULD be indexed by the Registered Homenet Domain contained in the NOTIFY payload as well as the RRSIG. In other words, the IP address SHOULD NOT be used as an index. If authentication succeeds, the Synchronization Server MUST also notice the IP address has been modified and perform a reachability check before updating its primary configuration. The routability check MAY performed by sending a SOA request to the Hidden Primary using the source IP address of the NOTIFY. This exchange is also secured, and if an authenticated response is received from the Hidden Primary with the new IP address, the Synchronization Server SHOULD update its configuration file and retrieve the Homenet Zone using an AXFR or a IXFR exchange.

Note that the primary reason for providing the IP address is that the Hidden Primary is not publicly announced in the DNS. If the Hidden Primary were publicly announced in the DNS, then the IP address update could have been performed using the DNS as described in Section 8.2.

8.2. Synchronization Server

Renumbering of the Synchronization Server results in the Synchronization Server changing its IP address. The Synchronization Server is a secondary, so its renumbering does not impact the Homenet Zone. In fact, exchanges to the Synchronization Server are restricted to the Homenet Zone synchronization. In our case, the Hidden Primary MUST be able to send NOTIFY payloads to the Synchronization Server.

If the Synchronization Server is configured in the Hidden Primary configuration file using a FQDN, then the update of the IP address is performed by DNS. More specifically, before sending the NOTIFY, the Hidden Primary performs a DNS resolution to retrieve the IP address of the secondary.

As described in Section 8.1, the Synchronization Server DNS information SHOULD be coherent with the IP plane. Let TTL be the TTL associated with the Synchronization Server FQDN, T_NEW the time the new IP address replaces the old one and T_OLD_UNREACHABLE the time the Synchronization Server is not reachable anymore with its old IP address. Seamless reachability is provided as long as T_OLD_UNREACHABLE - T_NEW > 2 * TTL. If this condition is not met, the Synchronization Server may be unreachable during 2 * TTL - (T_OLD_UNREACHABLE - T_NEW). In the case of a break-before-make, T_OLD_UNREACHABLE = T_NEW, and it may become unreachable up to 2 * TTL.
Some DNS infrastructure uses the IP address to designate the secondary, in which case, other mechanisms must be found. The reason for using IP addresses instead of names is generally to reach an internal interface that is not designated by a FQDN, and to avoid potential bootstrap problems. Such scenarios are considered as out of scope in the case of home networks.

In this document we assume that the Outsourcing Infrastructure MAY sign the Homenet Zone. Multiple variants MAY be proposed by the Outsourcing Infrastructure. The Outsourcing Infrastructure MAY propose signing the DNS Homenet Zone with keys generated by the Outsourcing Infrastructure and which are unknown to the HNA. Alternatively the Outsourcing Infrastructure MAY propose that the end user provides the private keys. Although not considered in this document, some end users MAY still prefer to sign their zone with their own keys that they do not communicate to the Outsourcing Infrastructure. All these alternatives result from a negotiation between the end user and the Outsourcing Infrastructure. This negotiation is performed out-of-band and is out of scope of this document.

In this document, we consider that the Outsourcing Infrastructure has all the necessary cryptographic elements to perform zone signing and key management operations.

Note that Outsourcing Infrastructure described in this document implements various functions, and thus different entities may be involved.

- DNS Slave function synchronizes the Homenet Zone between the HNA and the Outsourcing Infrastructures. The DNS Homenet Zone SHOULD NOT be published directly on the Public Authoritative Servers, and the Public Authoritative Server(s) MUST NOT respond to any DNS queries for that zone. Instead, the Outsourcing Infrastructure chooses a dedicated set of servers to serve the Public Homenet Zone: the Public Authoritative Server(s).
- DNS Zone Signing function signs the DNS Zone Homenet Zone to generate a Public Homenet Zone.
- Public Authoritative Server hosts the naming service for the Public Homenet Zone. Any DNS query associated with the Homenet Zone SHOULD be performed using the specific servers designated as the Public Authoritative Servers.

9. Privacy Considerations

Outsourcing the DNS Authoritative service from the HNA to a third party raises a few privacy related concerns.

The Homenet Zone contains a full description of the services hosted in the network. These services may not be expected to be publicly shared although their names remain accessible through the Internet. Even though DNS makes information public, the DNS does not expect to make the complete list of services public. In fact, making information public still requires the key (or FQDN) of each service to be known by the resolver in order to retrieve information about the services. More specifically, making mywebsite.example.com public in the DNS, is not sufficient to make resolvers aware of the existence web site. However, an attacker may walk the reverse DNS zone, or use other reconnaissance techniques to learn this information as described in [RFC7707].

In order to prevent the complete Homenet Zone being published on the
Internet, AXFR queries SHOULD be blocked on the Public Authoritative Server(s). Similarly, to avoid zone-walking NSEC3 [RFC5155] SHOULD be preferred over NSEC [RFC4034]. When the Homenet Zone is outsourced, the end user should be aware that it provides a complete description of the services available on the home network. More
specifically, names usually provides a clear indication of the service and possibly even the device type, and as the Homenet Zone contains the IP addresses associated with the service, they also limit the scope of the scan space.

In addition to the Homenet Zone, the third party can also monitor the traffic associated with the Homenet Zone. This traffic may provide an indication of the services an end user accesses, plus how and when they use these services. Although, caching may obfuscate this information inside the home network, it is likely that outside your home network this information will not be cached.

10. Security Considerations

The Homenet Naming Architecture described in this document solves exposing the HNA’s DNS service as a DoS attack vector.

10.1. Names are less secure than IP addresses

This document describes how an end user can make their services and devices from his home network reachable on the Internet by using names rather than IP addresses. This exposes the home network to attackers, since names are expected to include less entropy than IP addresses. In fact, with IP addresses, the Interface Identifier is 64 bits long leading to up to $2^{64}$ possibilities for a given subnetwork. This is not to mention that the subnet prefix is also of 64 bits long, thus providing up to $2^{64}$ possibilities. On the other hand, names used either for the home network domain or for the devices present less entropy (livebox, router, printer, nicolas, jennifer, ...) and thus potentially exposes the devices to dictionary attacks.

10.2. Names are less volatile than IP addresses

IP addresses may be used to locate a device, a host or a service. However, home networks are not expected to be assigned a time invariant prefix by ISPs. As a result, observing IP addresses only provides some ephemeral information about who is accessing the service. On the other hand, names are not expected to be as volatile as IP addresses. As a result, logging names over time may be more valuable than logging IP addresses, especially to profile an end user’s characteristics.

PTR provides a way to bind an IP address to a name. In that sense, responding to PTR DNS queries may affect the end user’s privacy. For that reason end users may choose not to respond to PTR DNS queries and MAY instead return a NXDOMAIN response.
10.3. DNS Reflection Attacks

An attacker performs a reflection attack when it sends traffic to one or more intermediary nodes (reflectors), that in turn send back response traffic to the victim. Motivations for using an intermediary node might be anonymity of the attacker, as well as amplification of the traffic. Typically, when the intermediary node is a DNSSEC server, the attacker sends a DNSSEC query and the victim is likely to receive a DNSSEC response. This section analyzes how the different components may be involved as a reflector in a reflection attack. Section 10.4 considers the Hidden Primary, Section 10.5 the Synchronization Server, and Section 10.6 the Public Authoritative Server(s).

10.4. "Reflection Attack involving the Hidden Primary

With the specified architecture, the Hidden Primary is only expected to receive DNS queries of type SOA, AXFR or IXFR. This section analyzes how these DNS queries may be used by an attacker to perform a reflection attack.

DNS queries of type AXFR and IXFR use TCP and as such are less subject to reflection attacks. This makes SOA queries the only remaining practical vector of attacks for reflection attacks, based on UDP.

SOA queries are not associated with a large amplification factor compared to queries of type "ANY" or to query of non existing FQDNs. This reduces the probability a DNS query of type SOA will be involved in a DDoS attack.

SOA queries are expected to follow a very specific pattern, which makes rate limiting techniques an efficient way to limit such attacks, and associated impact on the naming service of the home network.

Motivations for such a flood might be a reflection attack, but could also be a resource exhaustion attack performed against the Hidden Primary. The Hidden Primary only expects to exchange traffic with the Synchronization Server, that is its associated secondary. Even though secondary servers may be renumbered as mentioned in Section 8, the Hidden Primary is likely to perform a DNSSEC resolution and find out the associated secondary’s IP addresses in use. As a result, the Hidden Primary is likely to limit the origin of its incoming traffic based on the origin IP address.

With filtering rules based on IP address, SOA flooding attacks are limited to forged packets with the IP address of the secondary
server. In other words, the only victims are the Hidden Primary itself or the secondary. There is a need for the Hidden Primary to limit that flood to limit the impact of the reflection attack on the secondary, and to limit the resource needed to carry on the traffic by the HNA hosting the Hidden Primary. On the other hand, mitigation should be performed appropriately, so as to limit the impact on the legitimate SOA sent by the secondary.

The main reason for the Synchronization Server sending a SOA query is to update the SOA RRset after the TTL expires, to check the serial number upon the receipt of a NOTIFY query from the Hidden Primary, or to re-send the SOA request when the response has not been received. When a flood of SOA queries is received by the Hidden Primary, the Hidden Primary may assume it is involved in an attack.

There are few legitimate time slots when the secondary is expected to send a SOA query. Suppose T_NOTIFY is the time a NOTIFY is sent by the Hidden Primary, T_SOA the last time the SOA has been queried, TTL the TTL associated to the SOA, and T_REFRESH the refresh time defined in the SOA RRset. The specific time SOA queries are expected can be for example T_NOTIFY, T_SOA + 2/3 TTL, T_SOA + TTL, T_SOA + T_REFRESH., and. Outside a few minutes following these specific time slots, the probability that the HNA discards a legitimate SOA query is very low. Within these time slots, the probability the secondary may have its legitimate query rejected is higher. If a legitimate SOA is discarded, the secondary will re-send SOA query every "retry time" second until "expire time" seconds occurs, where "retry time" and "expire time" have been defined in the SOA.

As a result, it is RECOMMENDED to set rate limiting policies to protect HNA resources. If a flood lasts more than the expired time defined by the SOA, it is RECOMMENDED to re-initiate a synchronization between the Hidden Primary and the secondaries.

10.5. Reflection Attacks involving the Synchronization Server

The Synchronization Server acts as a secondary coupled with the Hidden Primary. The secondary expects to receive NOTIFY query, SOA responses, AXFR and IXFR responses from the Hidden Primary.

Sending a NOTIFY query to the secondary generates a NOTIFY response as well as initiating an SOA query exchange from the secondary to the Hidden Primary. As mentioned in [RFC1996], this is a known "benign denial of service attack". As a result, the Synchronization Server SHOULD enforce rate limiting on sending SOA queries and NOTIFY responses to the Hidden Primary. Most likely, when the secondary is flooded with valid and signed NOTIFY queries, it is under a replay attack which is discussed in Section 10.8. The key thing here is
that the secondary is likely to be designed to be able to process much more traffic than the Hidden Primary hosted on a HNA.

This paragraph details how the secondary may limit the NOTIFY queries. Because the Hidden Primary may be renumbered, the secondary SHOULD NOT perform permanent IP filtering based on IP addresses. In addition, a given secondary may be shared among multiple Hidden Primaries which make filtering rules based on IP harder to set. The time at which a NOTIFY is sent by the Hidden Primary is not predictable. However, a flood of NOTIFY messages may be easily detected, as a NOTIFY originated from a given Homenet Zone is expected to have a very limited number of unique source IP addresses, even when renumbering is occurring. As a result, the secondary, MAY rate limit incoming NOTIFY queries.

On the Hidden Primary side, it is recommended that the Hidden Primary sends a NOTIFY as long as the zone has not been updated by the secondary. Multiple SOA queries may indicate the secondary is under attack.

10.6. Reflection Attacks involving the Public Authoritative Servers

Reflection attacks involving the Public Authoritative Server(s) are similar to attacks on any Outsourcing Infrastructure. This is not specific to the architecture described in this document, and thus are considered as out of scope.

In fact, one motivation of the architecture described in this document is to expose the Public Authoritative Server(s) to attacks instead of the HNA, as it is believed that the Public Authoritative Server(s) will be better able to defend itself.

10.7. Flooding Attack

The purpose of flooding attacks is mostly resource exhaustion, where the resource can be bandwidth, memory, or CPU for example.

One goal of the architecture described in this document is to limit the surface of attack on the HNA. This is done by outsourcing the DNS service to the Public Authoritative Server(s). By doing so, the HNA limits its DNS interactions between the Hidden Primary and the Synchronization Server. This limits the number of entities the HNA interacts with as well as the scope of DNS exchanges – NOTIFY, SOA, AXFR, IXFR.

The use of an authenticated channel with SIG(0) or TSIG between the HNA and the Synchronization Server, enables detection of illegitimate DNS queries, so appropriate action may be taken – like dropping the
queries. If signatures are validated, then most likely, the HNA is under a replay attack, as detailed in Section 10.8.

In order to limit the resource required for authentication, it is recommended to use TSIG that uses symmetric cryptography over SIG(0) that uses asymmetric cryptography.

10.8. Replay Attack

Replay attacks consist of an attacker either resending or delaying a legitimate message that has been sent by an authorized user or process. As the Hidden Primary and the Synchronization Server use an authenticated channel, replay attacks are mostly expected to use forged DNS queries in order to provide valid traffic.

From the perspective of an attacker, using a correctly authenticated DNS query may not be detected as an attack and thus may generate a response. Generating and sending a response consumes more resources than either dropping the query by the defender, or generating the query by the attacker, and thus could be used for resource exhaustion attacks. In addition, as the authentication is performed at the DNS layer, the source IP address could be impersonated in order to perform a reflection attack.

Section 10.3 details how to mitigate reflection attacks and Section 10.7 details how to mitigate resource exhaustion. Both sections assume a context of DoS with a flood of DNS queries. This section suggests a way to limit the attack surface of replay attacks.

As SIG(0) and TSIG use inception and expiration time, the time frame for replay attack is limited. SIG(0) and TSIG recommends a fudge value of 5 minutes. This value has been set as a compromise between possibly loose time synchronization between devices and the valid lifetime of the message. As a result, better time synchronization policies could reduce the time window of the attack.

As SIG(0) and TSIG use inception and expiration time, the time frame for replay attack is limited. SIG(0) and TSIG recommends a fudge value of 5 minutes. This value has been set as a compromise between possibly loose time synchronization between devices and the valid lifetime of the message. As a result, better time synchronization policies could reduce the time window of the attack.

Deploying DNSSEC is recommended, since in some cases the information stored in the DNS is used by the ISP or an IT department to grant access. For example some servers may perform PTR DNS queries to grant access based on host names. DNSSEC mitigates lack of trust in DNS, and it is RECOMMENDED to deploy DNSSEC on HNAs.
11. IANA Considerations

This document has no actions for IANA.

12. Acknowledgment

The authors wish to thank Philippe Lemordant for its contributions on the early versions of the draft; Ole Troan for pointing out issues with the IPv6 routed home concept and placing the scope of this document in a wider picture; Mark Townsley for encouragement and injecting a healthy debate on the merits of the idea; Ulrik de Bie for providing alternative solutions; Paul Mockapetris, Christian Jacquenet, Francis Dupont and Ludovic Eschard for their remarks on HNA and low power devices; Olafur Gudmundsson for clarifying DNSSEC capabilities of small devices; Simon Kelley for its feedback as dnsmasq implementer; Andrew Sullivan, Mark Andrew, Ted Lemon, Mikael Abrahamson, Michael Richardson and Ray Bellis for their feedback on handling different views as well as clarifying the impact of outsourcing the zone signing operation outside the HNA; Mark Andrew and Peter Koch for clarifying the renumbering.

13. References

13.1. Normative References


13.2. Informative References

[I-D.howard-dnsop-ip6rdns]
Howard, L., "Reverse DNS in IPv6 for Internet Service Providers", draft-howard-dnsop-ip6rdns-00 (work in progress), June 2014.

[I-D.ietf-homenet-naming-architecture-dhc-options]

[I-D.sury-dnsext-cname-dname]
Sury, O., "CNAME+DNAME Name Redirection", draft-sury-dnsext-cname-dname-00 (work in progress), April 2010.
Authors’ Addresses

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC 4S 0B6
Canada
EMail: daniel.migault@ericsson.com

Ralf Weber
Nominum
2000 Seaport Blvd
Redwood City 94063
US
EMail: ralf.weber@nominum.com

Ray Hunter
Globis Consulting BV
Weegschaalstraat 3
Eindhoven 5632CW
NL
EMail: v6ops@globis.net

Chris Griffiths
EMail: cgriffiths@gmail.com

Wouter Cloetens
SoftAtHome<
vaartdijk 3 701
Wijgmaal 3018
BE
EMail: cgriffiths@gmail.com
DHCPv6 Options for Homenet Naming Architecture
draft-ietf-homenet-naming-architecture-dhc-options-06

Abstract

The Homenet Naming Authority (HNA) is the designated device in charge of outsourcing the service to a third party, which requires setting up an architecture.

Such settings may be inappropriate for most end users. This document defines DHCPv6 options so any agnostic HNA can automatically proceed to the appropriate configuration and outsource the authoritative naming service for the home network. In most cases, the outsourcing mechanism is transparent for the end user.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 27, 2018.
Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Requirements notation ...................................... 3
2. Terminology .................................................. 3
3. Introduction .................................................. 3
4. Protocol Overview ............................................ 6
   4.1. Architecture and DHCPv6 Options Overview ............. 6
   4.2. Mechanisms Securing DNS Transactions .................. 9
   4.3. Primary / Secondary Synchronization versus DNS Update .. 10
5. HNA Configuration ............................................ 11
   5.1. HNA Primary / Secondary Synchronization Configurations .. 11
      5.1.1. HNA / Synchronization Server ....................... 11
      5.1.2. HNA / Reverse Synchronization Server ............... 11
   5.2. HNA DNS Data Handling and Update Policies ............. 12
      5.2.1. Homenet Zone Template ............................. 12
      5.2.2. DNS (Reverse) Homenet Zone ....................... 12
6. Payload Description ........................................... 13
   6.1. Supported Authentication Methods Field ................ 13
   6.2. Update Field ........................................... 14
   6.3. Client Public Key Option ................................ 14
   6.4. Zone Template Option ................................... 14
   6.5. Synchronization Server Option ......................... 15
   6.6. Reverse Synchronization Server Option ................ 16
7. DHCP Behavior ............................................... 17
   7.1. DHCPv6 Server Behavior ............................... 17
   7.2. DHCPv6 Client Behavior ................................ 18
   7.3. DHCPv6 Relay Agent Behavior ........................... 18
8. IANA Considerations ........................................ 18
9. Security Considerations ..................................... 19
   9.1. DNSSEC is recommended to authenticate DNS hosted data .. 19
   9.2. Channel between the HNA and ISP DHCP Server MUST be
        secured ............................................... 19
   9.3. HNAs are sensitive to DoS ............................. 19
1. Requirements notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Terminology

The reader is expected to be familiar with [I-D.ietf-homenet-front-end-naming-delegation] and its terminology section. This section defines terms that have not been defined in [I-D.ietf-homenet-front-end-naming-delegation]:

- Client Public Key: designates a public key generated by the HNA. This key is used as an authentication credential for the HNA.

- Homenet Zone Template: The template used as a basis to generate the Homenet Zone.

- DNS Template Server: The DNS server that hosts the Homenet Zone Template.

- Homenet Reverse Zone: The reverse zone file associated to the Homenet Zone.

3. Introduction

HNAs are usually constrained devices with reduced network and CPU capacities. As such, a HNA hosting on the Internet the authoritative naming service for its home network may become vulnerable to resource exhaustion attacks. Outsourcing the authoritative service to a third party avoids exposing the HNA to such attacks. This third party can be the ISP or any other independent third party.

Outsourcing the authoritative naming service to a third party requires setting up an architecture designated in this document as
the Outsourcing Infrastructure. These settings may be inappropriate for most end users that do not have the sufficient knowledge. To address this issue, this document proposes DHCPv6 options so any agnostic HNA can automatically set the Outsourcing Infrastructure. In most cases, these DHCPv6 options are sufficient and do not require any additional interaction from the end user, thus achieving a zero-config settings. In some other cases, the end user is expected to perform some limited manual configuration.

When the HNA is plugged, the DHCPv6 options described in the document enable:

- 1. To build the Homenet Zone: Building the Homenet Zone requires filling the zone with appropriated bindings such as bindings between the names and the IP addresses of the different devices of the home networks. How the HNA is aware of these binding is out of scope of the document. They may be provided, for example, by the DHCPv6 server hosted on the HNA. On the other hand, building the Homenet Zone also requires configuration parameters like the name of the Registered Domain Name associated to the home network or the Public Authoritative Server(s) the Homenet Zone is outsourced to. These configuration parameters are stored in the Homenet Zone Template. This document describes the Zone Template Option which carries the FQDN associated to the Homenet Zone Template. In order to retrieve the Homenet Zone Template, the HNA sends a query of type AXFR [RFC1034], [RFC5936].

- 2. To upload the Homenet Zone to the Synchronization Server, in charge of publishing the Homenet Zone on the Public Authoritative Server(s). This document describes the Synchronization Server Option that provides the FQDN of the appropriated server. Note that, the document does not consider whether the Homenet Zone is signed or not, and if signed, which entity is responsible to sign it. Such questions are out of the scope of the current document.

- 3. To upload the Homenet Reverse Zone to the Reverse Synchronization Server in charge of publishing the Homenet Reverse Zone on the Reverse Public Authoritative Server(s). This document describes the Reverse Synchronization Server Option that provides the FQDN of the appropriated server. Similarly to item 2., we do not consider in this document if the Homenet Reverse Zone is signed or not, and if signed who signs it.

- 4. To provide authentication credential (a public key) to the DHCP Server: Information stored in the Homenet Zone Template, the
Homenet Zone and Homenet Reverse Zone belongs to the HNA, and only the HNA should be able to update or upload these zones. To authenticate the HNA, this document defines the Client Public Key Option. This option is sent by the HNA to the DHCPv6 server and provides the Client Public Key the HNA uses to authenticate itself. This document does not describe mechanisms used to transmit the Client Public Key from the DHCPv6 server to the appropriate entities. If the DHCPv6 server is not able to provide the Client Public Key to the appropriated entities, then the end user is likely to provide manually the Client Public Key to these entities. This document illustrates two scenarios: one where the DHCPv6 server is responsible for distributing the Client Public Key to the Synchronization Servers and Reverse Synchronization Server. In the other scenarios, the Client Public Key is distributed out of band.

The DHCPv6 options described in this document make possible to configure an Outsourcing Infrastructure with no or little configurations from the end user. A zero-config setting is achieved if the the link between the HNA and the DHCPv6 server and the link between the DHCPv6 server and the various DNS servers (Homenet Zone Server, the Reverse Synchronization Server, Synchronization Server) are trusted. For example, one way to provide a trustworthy connection between the HNA and the DHCPv6 server is defined in [I-D.ietf-dhc-sedhcpv6]. When both links are trusted, the HNA is able to provide its authentication credentials (a Client Public Key) to the DHCPv6 server, that in turn forwards it to the various DNS servers. With the authentication credentials on the DNS servers, the HNA is able to securely update.

If the DHCPv6 server cannot provide the Client Public Key to one of these servers (most likely the Synchronization Server) and the HNA needs to interact with the server, then, the end user is expected to provide the HNA’s Client Public Key to these servers (the Reverse Synchronization Server or the Synchronization Server) either manually or using other mechanisms. Such mechanisms are outside the scope of this document. In that case, the authentication credentials need to be provided every time the key is modified. Appendix A provides more details on how different scenarios impact the end users.

The remaining of this document is structured as follows. Section 4 provides an overview of the DHCPv6 options as well as the expected interactions between the HNA and the various involved entities. This section also provides an overview of available mechanisms to secure DNS transactions and update DNS data. Section 5 describes how the HNA may securely synchronize and update DNS data. Section 6 describes the payload of the DHCPv6 options and Section 7 details how
DHCPv6 client, server and relay agent behave. Section 8 lists the new parameters to be registered at the IANA, Section 9 provides security considerations. Finally, Appendix A describes how the HNA may behave and be configured regarding various scenarios.

4. Protocol Overview

This section provides an overview of the HNA’s interactions with the Outsourcing Infrastructure in Section 4.1, and so the necessary for its setting. In this document, the configuration is provided via DHCPv6 options. Once configured, the HNA is expected to be able to update and publish DNS data on the different components of the Outsourcing Infrastructure. As a result authenticating and updating mechanisms play an important role in the specification. Section 4.2 provides an overview of the different authentication methods and Section 4.3 provides an overview of the different update mechanisms considered to update the DNS data.

4.1. Architecture and DHCPv6 Options Overview

This section illustrates how a HNA receives the necessary information via DHCPv6 options to outsource its authoritative naming service on the Outsourcing Infrastructure. For the sake of simplicity, this section assumes that the DHCPv6 server is able to communicate to the various DNS servers and to provide them the public key associated with the HNA. Once each server got the public key, the HNA can proceed to transactions in an authenticated and secure way.

This scenario has been chosen as it is believed to be the most popular scenario. This document does not ignore that scenarios where the DHCP Server does not have privileged relations with the Synchronization Server must be considered. These cases are discussed latter in Appendix A. Such scenario does not necessarily require configuration for the end user and can also be zero-config.

The scenario is represented in Figure 1.

- 1: The HNA provides its Client Public Key to the DHCP Server using a Client Public Key Option (OPTION_PUBLIC_KEY) and includes the following option codes in its its Option Request Option (ORO): Zone Template Option (OPTION_DNS_ZONE_TEMPLATE), the Synchronization Server Option (OPTION_SYNC_SERVER) and the Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER).

- 2: The DHCP Server makes the Client Public Key available to the DNS servers, so the HNA can secure its DNS transactions. How the Client Public Key is transmitted to the various DNS servers
is out of scope of this document. Note that the Client Public Key alone is not sufficient to perform the authentication and the key should be, for example, associated with an identifier, or the concerned domain name. How the binding is performed is out of scope of the document. It can be a centralized database or various bindings may be sent to the different servers. Figure 1 represents the specific case where the DHCP Server forwards the set (Client Public Key, Zone Template FQDN) to the DNS Template Server, the set (Client Public Key, IPv6 subnet) to the Reverse Synchronization Server and the set (Client Public Key, Registered Homenet Domain) to the Synchronization Server.

- 3: The DHCP Server responds to the HNA with the requested DHCPv6 options, i.e. the Client Public Key Option (OPTION_PUBLIC_KEY), Zone Template Option OPTION_DNS_ZONE_TEMPLATE, Synchronization Server Option (OPTION_SYNC_SERVER), Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER). Note that this step may be performed in parallel to step 2, or even before. In other words, there is no requirements that step 3 is conducted after step 2.

- 4: Upon receiving the Zone Template Option (OPTION_DNS_ZONE_TEMPLATE), the HNA performs an AXFR DNS query for the Zone Template FQDN. The exchange is authenticated according to the authentication methods defined in the Supported Authentication Methods field of the DHCP option. Once the HNA has retrieved the DNS Zone Template, the HNA can build the Homenet Zone and the Homenet Reverse Zone. Eventually the HNA signs these zones.

- 5: Once the Homenet Reverse Zone has been set, the HNA uploads the zone to the Reverse Synchronization Server. The Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER) provides the Reverse Synchronization Server FQDN as well as the upload method, and the Supported Authentication Methods protocol to secure the upload.

- 6: Once the Homenet Zone has been set, the HNA uploads the zone to the Synchronization Server. The Synchronization Server Option (OPTION_SYNC_SERVER) provides the Synchronization Server FQDN as well as the upload method and the authentication method to secure the upload.
As described above, the HNA is likely to interact with various DNS content. More specifically, the HNA is likely to update the:

- Homenet Zone Template: if the configuration of the zone may be changed. This may include additional Public Authoritative Server(s), a different Registered Homenet Domain as the one initially proposed, or a redirection to another domain.

- Homenet Reverse Zone: every time a new device is connected or dis-connected.

- Homenet Zone: every time a new device is connected, dis-connected.

Step 2 and step 3 should be considered as independent steps and could be re-ordered. In fact, the DHCPv6 server does not have to wait for a confirmation from the DNS servers the Client Public Key has been properly received, and is operational by the DNS servers. The DHCP Server is expected to reply upon receiving the Client Public Key Option. The reply to the message with a Client Public Key Option from the DHCP Server is interpreted by the DHCPv6 client as a confirmation of the reception of the option by the DHCP Server only. It does not indicate whether the server had processed the option or
not. Debugging configurations errors or transmission error with one of the DNS servers is let to the HNA and thus is outside of the scope of the DHCPv6. First, it is unlikely a DNS server can validate that the Client Public Key will be operational for the HNA, as multiple causes of errors could occur. For example, the Client Public Key may have been changed during the transmission or by the DHCP Server, or the DNS server may be misconfigured. Second, the number of error codes would be too complex. In addition to multiple causes of errors, multiple architectures and multiple DNS servers may be involved. Third, this may cause significant DHCP Server performance degradation.

In fact, the HNA performs these updates in a secure manner. There are multiple ways to secure a DNS transaction and this document considers two mechanisms: nsupdate and primary/secondary synchronization. Section 4.2 describes the authentication method that may be use to secure the DNS transactions of the HNA. The appropriate authentication methods may, for example, be chosen according to the level of confidentiality or the level of authentication requested by the HNA transactions. Section 4.3 positions the nsupdate and primary/secondary synchronization mechanisms. The update appropriate update mechanism may depend on the for example on the update frequency or the size of the DNS data to update.

4.2. Mechanisms Securing DNS Transactions

Multiple protocols like IPsec [RFC4301] or TLS / DTLS [RFC5246] / [RFC6347] may be used to secure DNS transactions between the HNA and the DNS servers. This document limits its scope to authentication method that have been designed specifically for DNS. This includes DNSSEC [RFC4033], [RFC4034], [RFC4035] that authenticates and provides integrity protection of DNS data, TSIG [RFC2845], [RFC2930] that use a shared secret to secure a transaction between two end points and SIG(0) [RFC2931] authenticates the DNS packet exchanged.

The key issue with TSIG is that a shared secret must be negotiated between the HNA and the server. On the other hand, TSIG performs symmetric cryptography which is light in comparison with asymmetric cryptography used by SIG(0). As a result, over large zone transfer, TSIG may be preferred to SIG(0).

This document does not provide means to distribute shared secret for example using a specific DHCPv6 option. The only assumption made is that the HNA generates or is assigned a public key.

As a result, when the document specifies the transaction is secured with TSIG, it means that either the HNA and the DNS server have been
manually configured with a shared secret, or the shared secret has been negotiated using TKEY [RFC2930], and the TKEY exchanged are secured with SIG(0).

Exchanges with the DNS Template Server to retrieve the Homenet Zone Template may be protected by SIG(0), TSIG or DNSSEC. When DNSSEC is used, it means the DNS Template Server only provides integrity protection, and does not necessarily prevent someone else to query the Homenet Zone Template. In addition, DNSSEC is only a way to protect the AXFR queries transaction, in other words, DNSSEC cannot be used to secure updates. If DNSSEC is used to provide integrity protection for the AXFR response, the HNA should proceed to the DNSSEC signature checks. If signature check fails, it MUST reject the response. If the signature check succeeds, the HNA removes all DNSSEC related RRsets (DNSKEY, RRSIG, NSEC* ...) before building the Homenet Zone. In fact, these DNSSEC related fields are associated to the Homenet Zone Template and not the Homenet Zone.

Any update exchange should use SIG(0) or TSIG to authenticate the exchange.

4.3. Primary / Secondary Synchronization versus DNS Update

As updates only concern DNS zones, this document only considers DNS update mechanisms such as DNS update [RFC2136] [RFC3007] or a primary / secondary synchronization.

The Homenet Zone Template SHOULD be updated with DNS update as it contains static configuration data that is not expected to evolve over time.

The Homenet Reverse Zone and the Homenet Zone can be updated either with DNS update or using a primary / secondary synchronization. As these zones may be large, with frequent updates, we recommend to use the primary / secondary architecture as described in [I-D.ietf-homenet-front-end-naming-delegation]. The primary / secondary mechanism is preferred as it better scales and avoids DoS attacks: First the primary notifies the secondary the zone must be updated, and leaves the secondary to proceed to the update when possible. Then, the NOTIFY message sent by the primary is a small packet that is less likely to load the secondary. At last, the AXFR query performed by the secondary is a small packet sent over TCP (section 4.2 [RFC5936]) which makes unlikely the secondary to perform reflection attacks with a forged NOTIFY. On the other hand, DNS updates can use UDP, packets require more processing than a NOTIFY, and they do not provide the server the opportunity to postpone the update.
5. HNA Configuration

5.1. HNA Primary / Secondary Synchronization Configurations

The primary / secondary architecture is described in [I-D.ietf-homenet-front-end-naming-delegation]. The HNA hosts a Hidden Primary that synchronizes with a Synchronization Server or the Reverse Synchronization Server.

When the HNA is plugged its IP address may be unknown to the secondary. The section details how the HNA or primary communicates the necessary information to set up the secondary.

In order to set the primary / secondary configuration, both primary and secondaries must agree on 1) the zone to be synchronized, 2) the IP address and ports used by both primary and secondary.

5.1.1. HNA / Synchronization Server

The HNA is aware of the zone to be synchronized by reading the Registered Homenet Domain in the Homenet Zone Template provided by the Zone Template Option (OPTION_DNS_ZONE_TEMPLATE). The IP address of the secondary is provided by the Synchronization Server Option (OPTION_SYNC_SERVER).

The Synchronization Server has been configured with the Registered Homenet Domain and the Client Public Key that identifies the HNA. The only missing information is the IP address of the HNA. This IP address is provided by the HNA by sending a NOTIFY [RFC1996].

When the HNA has built its Homenet Zone, it sends a NOTIFY message to the Synchronization Servers. Upon receiving the NOTIFY message, the secondary reads the Registered Homenet Domain and checks the NOTIFY is sent by the authorized primary. This can be done using the shared secret (TSIG) or the public key (SIG(0)). Once the NOTIFY has been authenticated, the Synchronization Servers might consider the source IP address of the NOTIFY query to configure the primaries attributes.

5.1.2. HNA / Reverse Synchronization Server

The HNA is aware of the zone to be synchronized by looking at its assigned prefix. The IP address of the secondary is provided by the Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER).

Configuration of the secondary is performed as illustrated in Section 5.1.1.
5.2. HNA DNS Data Handling and Update Policies

5.2.1. Homenet Zone Template

The Homenet Zone Template contains at least the related fields of the Public Authoritative Server(s) as well as the Homenet Registered Domain, that is SOA, and NS fields. This template might be generated automatically by the owner of the DHCP Server. For example, an ISP might provide a default Homenet Registered Domain as well as default Public Authoritative Server(s). This default settings should provide the HNA the necessary pieces of information to set the homenet naming architecture.

If the Homenet Zone Template is not subject to modifications or updates, the owner of the template might only use DNSSEC to enable integrity check.

On the other hand, the Homenet Zone Template might also be subject to modification by the HNA. The advantage of using the standard DNS zone format is that standard DNS update mechanism can be used to perform updates. These updates might be accepted or rejected by the owner of the Homenet Zone Template. Policies that defines what is accepted or rejected is out of scope of this document. However, this document assumes the Registered Homenet Domain is used as an index by the Synchronization Server, and SIG(0), TSIG are used to authenticate the HNA. As a result, the Registered Homenet Domain should not be modified unless the Synchronization Server can handle with it.

5.2.2. DNS (Reverse) Homenet Zone

The Homenet Zone might be generated from the Homenet Zone Template. How the Homenet Zone is generated is out of scope of this document. In some cases, the Homenet Zone might be the exact copy of the Homenet Zone Template. In other cases, it might be generated from the Homenet Zone Template with additional RRsets. In some other cases, the Homenet Zone might be generated without considering the Homenet Zone Template, but only considering specific configuration rules.

In the current document the HNA only sets a single zone that is associated with one single Homenet Registered Domain. The domain might be assigned by the owner of the Homenet Zone Template. This constraint does not prevent the HNA to use multiple domain names. How additional domains are considered is out of scope of this document. One way to handle these additional zones is to configure static redirections to the Homenet Zone using CNAME [RFC2181], [RFC1034], DNAME [RFC6672] or CNAME+DNAME [I-D.sury-dnsext-cname-dname].
6. Payload Description

This section details the payload of the DHCPv6 options. A few DHCPv6 options are used to advertise a server the HNA may be expected to interact with. Interaction may require to define update and authentication methods. Update fields are shared by multiple DHCPv6 options and are described in separate sections. Section 6.1 describes the Supported Authentication Method field, Section 6.2 describes the Update field, the remaining Section 6.3, Section 6.4, Section 6.5, Section 6.6 describe the DHCPv6 options.

6.1. Supported Authentication Methods Field

The Supported Authentication Methods field of the DHCPv6 option represented in Figure 2 indicates the authentication method supported by the DNS server. One of these mechanism MUST be chosen by the HNA in order to perform a transaction with the DNS server. See Section 4.2 for more details.

```
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Supported Auth. Methods    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: Supported Authentication Methods Filed

- DNS (Bit 0): indicates, when set to 1, that DNS without any security extension is supported.

- DNSSEC (Bit 1): indicates, when set to 1, that DNSSEC provides integrity protection. This can only be used for read operations like retrieving the Homenet Zone Template.

- SIG(0) (Bit 2): indicates, when set to 1, that transaction protected by SIG(0) are supported.

- TSIG (Bit 3): indicates, when set to 1, that transaction using TSIG is supported. Note that if a shared secret has not been previously negotiated between the two party, it should be negotiated using TKEY. The TKEY exchanges MUST be protected with SIG(0) even though SIG(0) is not supported.

- Remaining Bits (Bit 4-15): MUST be set to 0 by the DHCP Server and MUST be ignored by the DHCPv6 client.

A Supported Authentication Methods field with all bits set to zero indicates the operation is not permitted. The Supported
Authentication Methods field may be set to zero when updates operations are not permitted for the DNS Homenet Template. In any other case this is an error.

6.2. Update Field

The Update Field of the DHCPv6 option is represented in Figure 3. It indicates the update mechanism supported by the DNS server. See Section 4.3 for more details.

```
0 1 2 3 4 5 6 7
+---+---+---+---+
|   Update   |
+-------------+
```

Figure 3: Update Field

- Primary / Secondary (Bit 0): indicates, when set to 1, that DNS Server supports data synchronization using a Primary / Secondary mechanism.

- DNS Update (Bit 1): indicates, when set to 1, that DNS Server supports data synchronization using DNS Updates.

- Remaining Bits (Bit 2-7): MUST be set to 0 by the DHCPv6 server and MUST be ignored by the DHCPv6 client.

6.3. Client Public Key Option

The Client Public Key Option (OPTION_PUBLIC_KEY) indicates the Client Public Key that is used to authenticate the HNA. This option is defined in [I-D.ietf-dhc-sedhcpv6].

6.4. Zone Template Option

The Zone Template Option (OPTION_DNS_ZONE_TEMPLATE) Option indicates the HNA how to retrieve the Homenet Zone Template. It provides a FQDN the HNA SHOULD query with a DNS query of type AXFR as well as the authentication methods associated to the AXFR query or the nsupdate queries. Homenet Zone Template update, if permitted MUST use the DNS Update mechanism.
Figure 4: Zone Template Option

- option-code: (16 bits): OPTION_DNS_ZONE_TEMPLATE, the option code for the Zone Template Option (TBD1).

- option-len (16 bits): length in octets of the option-data field as described in [RFC3315].

- Supported Authentication Methods(axfr) (16 bits): defines which authentication methods are supported by the DNS server. This field concerns the AXFR and consultation queries, not the update queries. See Section 6.1 for more details.

- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. This field concerns the update. See Section 6.1 for more details.

- Zone Template FQDN FQDN (variable): the FQDN of the DNS server hosting the Homenet Zone Template.

6.5. Synchronization Server Option

The Synchronization Server Option (OPTION_SYNC_SERVER) provides information necessary for the HNA to upload the Homenet Zone to the Synchronization Server. Finally, the option provides the authentication methods that are available to perform the upload. The upload is performed via a DNS primary / secondary architecture or DNS updates.
6.5. Synchronization Server Option

Figure 5: Synchronization Server Option

- option-code (16 bits): OPTION_SYNC_SERVER, the option code for the Synchronization Server Option (TBD2).
- option-len (16 bits): length in octets of the option-data field as described in [RFC3315].
- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. See Section 6.1 for more details.
- Update (8 bits): defines which update mechanisms are supported by the DNS server. See Section 4.3 for more details.
- Server Port (16 bits): defines the port the Synchronization Server is listening. When multiple transport layers may be used, a single and unique Server Port value applies to all the transport layers. In the case of DNS for example, Server Port value considers DNS exchanges using UDP and TCP.
- Synchronization Server FQDN (variable): the FQDN of the Synchronization Server.

6.6. Reverse Synchronization Server Option

The Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER) provides information necessary for the HNA to upload the Homenet Zone to the Synchronization Server. The option provides the authentication methods that are available to perform the upload. The upload is performed via a DNS primary / secondary architecture or DNS updates.
Figure 6: Reverse Synchronization Server Option
- option-code (16 bits): OPTION_REVERSE_SYNC_SERVER, the option code for the Reverse Synchronization Server Option (TBD3).
- option-len (16 bits): length in octets of the option-data field as described in [RFC3315].
- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. See Section 6.1 for more details.
- Update (8 bits): defines which update mechanisms are supported by the DNS server. See Section 4.3 for more details.
- Server Port (16 bits): defines the port the Synchronization Server is listening.
- Reverse Synchronization Server FQDN (variable): The FQDN of the Reverse Synchronization Server.

7. DHCP Behavior

7.1. DHCPv6 Server Behavior

Sections 17.2.2 and 18.2 of [RFC3315] govern server operation in regards to option assignment. As a convenience to the reader, we mention here that the server will send option foo only if configured with specific values for foo and if the client requested it. In particular, when configured the DHCP Server sends the Zone Template Option, Synchronization Server Option, Reverse Synchronization Server Option when requested by the DHCPv6 client by including necessary option codes in its ORO.
The DHCP Server may receive a Client Public Key Option (OPTION_PUBLIC_KEY) from the HNA. Upon receipt of this DHCPv6 option, the DHCP Server SHOULD acknowledge the reception of the Client Public Key Option as described in Section 4.1 and communicate this credential to the available DNS Servers like the DNS Template Server, the Synchronization Server and the Reverse Synchronization Server, unless not configured to do so.

A HNA may update its Client Public Key by sending a new value in the Client Public Key Option (OPTION_PUBLIC_KEY) as this document assumes the link between the HNA and the DHCP Server is considered authenticated and trusted. The server SHOULD process received Client Public Key Option sent by the client (see step 2 in Section 4.1), unless not configured to do so.

7.2. DHCPv6 Client Behavior

The DHCPv6 client SHOULD send a Client Public Key Option (OPTION_PUBLIC_KEY) to the DHCP Server. This Client Public Key authenticates the HNA.

The DHCPv6 client sends a ORO with the necessary option codes: Zone Template Option, Synchronization Server Option and Reverse Synchronization Server Option.

Upon receiving a DHCP option described in this document in the Reply message, the HNA SHOULD retrieve or update DNS zones using the associated Supported Authentication Methods and update protocols, as described in Section 5.

7.3. DHCPv6 Relay Agent Behavior

There are no additional requirements for the DHCP Relay agents.

8. IANA Considerations

The DHCP options detailed in this document is:

- OPTION_DNS_ZONE_TEMPLATE: TBD1
- OPTION_SYNC_SERVER: TBD2
- OPTION_REVERSE_SYNC_SERVER: TBD3
9. Security Considerations

9.1. DNSSEC is recommended to authenticate DNS hosted data

It is recommended that the (Reverse) Homenet Zone is signed with DNSSEC. The zone may be signed by the HNA or by a third party. We recommend the zone to be signed by the HNA, and that the signed zone is uploaded.

9.2. Channel between the HNA and ISP DHCP Server MUST be secured

The channel MUST be secured because the HNA provides authentication credentials. Unsecured channel may result in HNA impersonation attacks.

The document considers that the channel between the HNA and the ISP DHCP Server is trusted. More specifically, the HNA is authenticated and the exchanged messages are protected. The current document does not specify how to secure the channel. [RFC3315] proposes a DHCP authentication and message exchange protection, [RFC4301], [RFC7296] propose to secure the channel at the IP layer.

9.3. HNAs are sensitive to DoS

HNAs have not been designed for handling heavy load. The HNA are exposed on the Internet, and their IP address is publicly published on the Internet via the DNS. This makes the Home Network sensitive to Deny of Service Attacks. The resulting outsourcing architecture is described in [I-D.ietf-homenet-front-end-naming-delegation]. This document shows how the outsourcing architecture can be automatically set.

10. Acknowledgments

We would like to thank Marcin Siodelski and Bernie Volz for their comments on the design of the DHCPv6 options. We would also like to thank Mark Andrews, Andrew Sullivan and Lorenzo Colliti for their remarks on the architecture design. The designed solution has been largely been inspired by Mark Andrews’s document [I-D.andrews-dnsop-pd-reverse] as well as discussions with Mark. We also thank Ray Hunter for its reviews, its comments and for suggesting an appropriated terminology.

11. References
11.1.  Normative References


11.2. Informational References

Appendix A. Scenarios and impact on the End User

This section details various scenarios and discuss their impact on the end user.

A.1. Base Scenario

The base scenario is the one described in Section 4. It is typically the one of an ISP that manages the DHCP Server, and all DNS servers.

The end user subscribes to the ISP (foo), and at subscription time registers for example.foo as its Registered Homenet Domain example.foo. Since the ISP knows the Registered Homenet Domain and the Public Authoritative Server(s) the ISP is able to build the Homenet Zone Template.

The ISP manages the DNS Template Server, so it is able to load the Homenet Zone Template on the DNS Template Server.

When the HNA is plugged (at least the first time), it provides its Client Public Key to the DHCP Server. In this scenario, the DHCP Server and the DNS Servers are managed by the ISP so the DHCP Server can provide authentication credentials of the HNA to enable secure authenticated transaction between the HNA and these DNS servers. More specifically, credentials are provided to:

- Synchronization Server
- Reverse Synchronization Server
- DNS Template Server
The HNA can update the zone using DNS update or a primary / secondary configuration in a secure way.

The main advantage of this scenario is that the naming architecture is configured automatically and transparently for the end user.

The drawbacks are that the end user uses a Registered Homenet Domain managed by the ISP and that it relies on the ISP naming infrastructure.

A.2. Third Party Registered Homenet Domain

This section considers the case when the end user wants its home network to use example.com as a Registered Homenet Domain instead of example.foo that has been assigned by the ISP. We also suppose that example.com is not managed by the ISP.

This can also be achieved without any configuration. When the end user buys the domain name example.com, it may request to redirect the name example.com to example.foo using static redirection with CNAME [RFC2181], [RFC1034], DNAME [RFC6672] or CNAME+DNAME [I-D.sury-dnsext-cname-dname].

This configuration is performed once when the domain name example.com is registered. The only information the end user needs to know is the domain name assigned by the ISP. Once this configuration is done no additional configuration is needed anymore. More specifically, the HNA may be changed, the zone can be updated as in Appendix A.1 without any additional configuration from the end user.

The main advantage of this scenario is that the end user benefits from the Zero Configuration of the Base Scenario Appendix A.1. Then, the end user is able to register for its home network an unlimited number of domain names provided by an unlimited number of different third party providers.

The drawback of this scenario may be that the end user still rely on the ISP naming infrastructure. Note that the only case this may be inconvenient is when the DNS Servers provided by the ISPs results in high latency.

A.3. Third Party DNS Infrastructure

This scenario considers that the end user uses example.com as a Registered Homenet Domain, and does not want to rely on the authoritative servers provided by the ISP.
In this section we limit the outsourcing to the Synchronization Server and Public Authoritative Server(s) to a third party. All other DNS Servers DNS Template Server, Reverse Public Authoritative Server(s) and Reverse Synchronization Server remain managed by the ISP. The reason we consider that Reverse Public Authoritative Server(s) and Reverse Synchronization Server remains managed by the ISP are that the prefix is managed by the ISP, so outsourcing these resources requires some redirection agreement with the ISP. More specifically the ISP will need to configure the redirection on one of its Reverse DNS Servers. That said, outsourcing these resources is similar as outsourcing Synchronization Server and Public Authoritative Server(s) to a third party. Similarly, the DNS Template Server can be easily outsourced as detailed in this section.

Outsourcing Synchronization Server and Public Authoritative Server(s) requires:

- 1) Updating the Homenet Zone Template: this can be easily done as detailed in Section 4.3 as the DNS Template Server is still managed by the ISP. Such modification can be performed once by any HNA. Once this modification has been performed, the HNA can be changed, the Client Public Key of the HNA may be changed, this does not need to be done another time. One can imagine a GUI on the HNA asking the end user to fill the field with Registered Homenet Domain, optionally Public Authoritative Server(s), with a button "Configure Homenet Zone Template".

- 2) Updating the DHCP Server Information. In fact the Reverse Synchronization Server returned by the ISP is modified. One can imagine a GUI interface that enables the end user to modify its profile parameters. Again, this configuration update is done once-for-ever.

- 3) Upload the authentication credential of the HNA, that is the Client Public Key of the HNA, to the third party. Unless we use specific mechanisms, like communication between the DHCP Server and the third party, or a specific token that is plugged into the HNA, this operation is likely to be performed every time the HNA is changed, and every time the Client Public Key generated by the HNA is changed.

The main advantage of this scenario is that the DNS infrastructure is completely outsourced to the third party. Most likely the Client Public Key that authenticate the HNA need to be configured for every HNA. Configuration is expected to be HNA live-long.
A.4. Multiple ISPs

This scenario considers a HNA connected to multiple ISPs.

Firstly, suppose the HNA has been configured with the based scenarios exposed in Appendix A.1. The HNA has multiple interfaces, one for each ISP, and each of these interface is configured using DHCP. The HNA sends to each ISP its Client Public Key Option as well as a request for a Zone Template Option, a Synchronization Server Option and a Reverse Synchronization Server Option. Each ISP provides the requested DHCP options, with different values. Note that this scenario assumes, the home network has a different Registered Homenet Domain for each ISP as it is managed by the ISP. On the other hand, the HNA Client Public Key may be shared between the HNA and the multiple ISPs. The HNA builds the associate DNS(SEC) Homenet Zone, and proceeds to the various settings as described in Appendix A.1.

The protocol and DHCPv6 options described in this document are fully compatible with a HNA connected to multiple ISPs with multiple Registered Homenet Domains. However, the HNA should be able to handle different Registered Homenet Domains. This is an implementation issue which is outside the scope of the current document. More specifically, multiple Registered Homenet Domains leads to multiple DNS(SEC) Homenet Zones. A basic implementation may erase the DNS(SEC) Homenet Zone that exists when it receives DHCPv6 options, and rebuild everything from scratch. This will work for an initial configuration but comes with a few drawbacks. First, updates to the DNS(SEC) Homenet Zone may only push to one of the multiple Registered Homenet Domain, the latest Registered Homenet Domain that has been set, and this is most likely expected to be almost randomly chosen as it may depend on the latency on each ISP network at the boot time. As a result, this leads to unsynchronized Registered Homenet Domains. Secondly, if the HNA handles in some ways resolution, only the latest Registered Homenet Domain set may be able to provide naming resolution in case of network disruption.

Secondly, suppose the HNA is connected to multiple ISP with a single Registered Homenet Domain. In this case, the one party is chosen to host the Registered Homenet Domain. This entity may be one of the ISP or a third party. Note that having multiple ISPs can be motivated for bandwidth aggregation, or connectivity fail-over. In the case of connectivity fail-over, the fail-over concerns the access network and a failure of the access network may not impact the core network where the Synchronization Server and Public Authoritative Primaries are hosted. In that sense, choosing one of the ISP even in a scenario of multiple ISPs may make sense. However, for sake of simplicity, this scenario assumes that a third party has been chosen to host the Registered Homenet Domain. The DNS settings for each ISP is
described in Appendix A.2 and Appendix A.3. With the configuration
described in Appendix A.2, the HNA is expected to be able to handle
multiple Homenet Registered Domain, as the third party redirect to
one of the ISPs Servers. With the configuration described in
Appendix A.3, DNS zone are hosted and maintained by the third party.
A single DNS(SEC) Homenet Zone is built and maintained by the HNA.
This latter configuration is likely to match most HNA
implementations.

The protocol and DHCPv6 options described in this document are fully
compatible with a HNA connected to multiple ISPs. To configure or
not and how to configure the HNA depends on the HNA facilities.
Appendix A.1 and Appendix A.2 require the HNA to handle multiple
Registered Homenet Domain, whereas Appendix A.3 does not have such
requirement.

Appendix B. Document Change Log

[RFC Editor: This section is to be removed before publication]

-05: changing Master to Primary, Slave to Secondary

-04: Working Version Major modifications are:

- Re-structuring the draft: description and comparison of update and
  authentication methods have been integrated into the Overview
  section. a Configuration section has been created to describe
  both configuration and corresponding behavior of the HNA.

- Adding Ports parameters: Server Set can configure a port. The
  Port Server parameter have been added in the DHCPv6 option
  payloads because middle boxes may not be configured to let port
  53 packets and it may also be useful to split servers among
  different ports, assigning each end user a different port.

- Multiple ISP scenario: In order to address comments, the multiple
  ISPs scenario has been described to explicitly show that the
  protocol and DHCPv6 options do not prevent a HNA connected to
  multiple independent ISPs.

-03: Working Version Major modifications are:

- Redesigning options/scope: according to feedbacks received from
  the IETF89 presentation in the dhc WG.

- Redesigning architecture: according to feedbacks received from
  the IETF89 presentation in the homenet WG, discussion with Mark
  and Lorenzo.
-02: Working Version Major modifications are:
- Redesigning options/scope: As suggested by Bernie Volz

-01: Working Version Major modifications are:
- Remove the DNS Zone file construction: As suggested by Bernie Volz
- DHCPv6 Client behavior: Following options guide lines
- DHCPv6 Server behavior: Following options guide lines

-00: version published in the homenet WG. Major modifications are:
- Reformatting of DHCPv6 options: Following options guide lines
- DHCPv6 Client behavior: Following options guide lines
- DHCPv6 Server behavior: Following options guide lines

-00: First version published in dhc WG.

Authors’ Addresses

Daniel Migault
Ericsson
8400 boulevard Decarie
Montreal, QC H4P 2N2
Canada

Email: daniel.migault@ericsson.com

Tomek Mrugalski
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City, CA 94063
USA

Email: tomasz.mrugalski@gmail.com
URI:    http://www.isc.org

Chris Griffiths

Email: cgriffiths@gmail.com
Ralf Weber  
Nominum  
2000 Seaport Blvd #400  
Redwood City, CA  94063  
US  

Email: ralf.weber@nominum.com  
URI: http://www.nominum.com  

Wouter Cloetens  
SoftAtHome  
vaartdijk 3 701  
3018 Wijgmaal  
Belgium  

Email: wouter.cloetens@softathome.com
Homenet Naming and Service Discovery Architecture

draft-ietf-homenet-simple-naming-03

Abstract

This document describes how names are published and resolved on homenets, and how hosts are configured to use these names to discover services on homenets. It presents the complete architecture, and describes a simple subset of that architecture that can be used in low-cost homenet routers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 26, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

Lemon, et al. Expires April 26, 2019
Table of Contents

1. Introduction .................................................. 3
2. Requirements .................................................. 3
   2.1. Managed LAN versus Homenet ............................... 4
      2.1.1. Multiple Provisioning Domains ...................... 5
   2.2. Homenet-specific considerations ......................... 5
3. Terminology ................................................... 6
4. Name .......................................................... 6
5. Authority ....................................................... 8
   5.1. Reachability ............................................... 8
   5.2. Link Names ............................................... 8
   5.3. Authoritative name service for the homenet domain ....... 9
   5.4. Authoritative name service for per-link subdomains of the homenet domain ........................................ 10
   5.5. Authoritative name service for the ULA reverse mapping domain .................................................... 10
   5.6. Authoritative name service for the RFC1918 reverse mapping domains ................................................. 10
6. Resolution ....................................................... 11
   6.1. Round Robining ............................................. 13
   6.2. Retransmission ............................................ 13
   6.3. DNS Stateful Operations and DNS Push ...................... 13
   6.4. Multicast DNS ............................................. 14
   6.5. Host behavior ............................................. 14
7. Publication ...................................................... 14
   7.1. DNSSD Service Registration Protocol ..................... 14
   7.2. Homenet Reverse Mapping Update Protocol ................. 15
      7.2.1. Adding ULA reverse mappings ....................... 15
      7.2.2. Adding RFC1918 reverse mappings .................... 16
8. Host Configuration .............................................. 16
9. Globally Unique Names ......................................... 16
10. DNSSEC Validation ............................................. 17
   10.1. How trust is established ................................. 17
11. Homenet Delegation Registration Protocol .................... 18
12. Using the Local Namespace While Away From Home ............... 19
13. Expected Host Behavior ....................................... 19
14. Management Considerations ................................... 19
15. Privacy Considerations ....................................... 20
16. Security Considerations ..................................... 20
17. IANA considerations ......................................... 20
   17.1. Homenet Reverse Registration Protocol .................. 20
   17.2. Homenet Delegation Registration Protocol .............. 20
   17.3. Unique Local Address Reserved Documentation Prefix .... 21
1. Introduction

This document is a homenet architecture document. The term ‘homenet’ refers to a set of technologies that allow home network users to have a local-area network (LAN) with more than one physical link and, optionally, more than one internet service provider. Home network users are assumed not to be knowledgeable in network operations, so homenets automatically configure themselves, providing connectivity and service discovery within the home with no operator intervention. This document describes the aspect of homenet automatic configuration that has to do with service discovery and name resolution.

This architecture provides a minimal set of features required to enable seamless service discovery on a multi-link home network, but does not attempt to provide feature parity with a managed LAN.

This document begins by presenting a motivational list of requirements and considerations, which should give the reader a clear idea of the scope of the problem being solved. It then explains how each requirement is addressed, and provides references for relevant standards documents describing the details of the implementation. Not all requirements are addressed by this architecture document, but the basic requirements are satisfied, and this document serves as a foundation upon which solutions to the remaining problems can be built.

2. Requirements

Name service on a local area network (LAN) requires the following:

- Name: a forward domain under which information about local services will be published
- Authority: a name server that is authoritative for at least one forward domain and one or two reverse domains that are applicable to that network and is capable of signing and publishing the zones using DNSSEC
- Resolution: a full-service caching DNS resolver that fully supports EDNS(0) and queries with the DO bit set
- Publication: a mechanism that
* allows services on the LAN to publish information about the services they provide
* allows services to publish information on how to reach them
* manages the lifetime of such information, so that it persists long enough to prevent spoofing, but protects end users from seeing stale information

- Host configuration: one or more automatic mechanisms (e.g. DHCP or RA) that provide:
  * caching resolver information to hosts on the LAN
  * information about how services on the LAN can publish information

- Trust: some basis for trusting the information that is provided by the service discovery system

2.1. Managed LAN versus Homenet

A managed network is one that has a (human) manager, or operator. The operator has authority over the network, and the authority to publish names in a forward DNS tree, and reverse names in the reverse tree. The operator has the authority to sign the respective trees with DNSSEC, and acquire TLS certificates for hosts/servers within the network.

On a managed LAN, many of these services can be provided by operators. When a new printer is added to the network, it can be added to the service discovery system (the authoritative server) manually. When a printer is taken out of service, it can be removed. In this scenario, the role of "publisher" is filled by the network operator.

In many managed LANs, establishment of trust for service discovery is simply on the basis of a belief that the local resolver will give a correct answer. Once the service has been discovered and chosen, there may be some security (e.g., TLS) that protects the connection to the service, but the trust model is often just "you’re connected to a network you trust, so you can trust the printer that you discovered on this network."

A homenet does not have an operator, so functions that would normally be performed by the operator have to happen automatically. This has implications for trust establishment--since there is no operator
controlling what services are published locally, some other mechanism is required for basic trust establishment.

2.1.1. Multiple Provisioning Domains

Additionally, whereas in a managed LAN with multiple links to the Internet, the network operator can configure the network so that multihoming is handled seamlessly, in a homenet, multihoming must be handled using multiple provisioning domains [RFC7556].

When a host on a homenet connects to a host outside the homenet, and the homenet is multihomed, the source address that the host uses for connecting determines which upstream ISP connection is used. In principle, this is not a problem, because the Internet is a fully connected network, so any host that is on the Internet can be reached by any host on the Internet, regardless of how that host connects to the Internet.

Unfortunately in practice this is not always the case. Some ISPs provide special services to their end users that are only accessible when connected through the ISP. When such a service is discovered using that ISP’s name server, a response will be provided that will only work if the host connects using a prefix provided by that ISP. If another ISP’s prefix is used, the connection will fail.

In the case of content delivery networks (CDNs), using the name service of one ISP and then connecting through a second ISP may seem to work, but may provide very poor service.

In order to address this problem, the homenet naming architecture takes two approaches. First, for hosts that do not support provisioning domain separation, we make sure that all ISP name servers are consulted in such a way that Happy Eyeballs will tend to work. Second, for hosts that do support provisioning domain separation, we provide information to the hosts to identify provisioning domains, and we provide a mechanism that hosts can use to indicate which provisioning domain to use for a particular DNS query.

2.2. Homenet-specific considerations

A naming architecture for homenets therefore adds the following considerations:

- All of the operations mentioned here must reliably function automatically, without any user intervention or debugging.
Because user intervention cannot be required, naming conflicts must be resolved automatically, and, to the extent possible, transparently.

Devices that provide services must be able to publish those services on the homenet, and those services must be available from any part of the homenet, not just the link to which the device is attached.

Homenets must address the problem of multiple provisioning domains, in the sense that the DNS may give a different answer depending on whether caching resolvers at one ISP or another are queried.

An additional requirement from the Homenet Architecture [RFC7556] is that hosts are not required to implement any homenet-specific capabilities in order to discover and access services on the homenet. This architecture may define optional homenet-specific features, but hosts that do not implement these features must work on homenets.

3. Terminology

This document uses the following terms and abbreviations:

HNR  Homenet Router

SHNR  Homenet Router implementing simple homenet naming architecture

AHNR  Homenet Router implementing advanced homenet naming architecture

ISP  Internet Service Provider

Forward Mapping  A mapping between a host name or service name and some information about that host or service.

Reverse Mapping  A mapping between an IP address and the host that has that IP address.

Homenet Domain  A domain name that is used for publishing the names of devices and services that are present on the homenet. By default, ‘home.arpa.’

4. Name

In order for names to be published on a homenet, it is necessary that there be a set of domain names under which such names are published. These domain names, together, are referred to as the "local domains."
By default, homnets publish names for forward lookups under the reserved domain ‘home.arpa.’ [RFC8375] publishing names.

So a host called ‘example’ that published its name on the homenet would publish its records on the domain name ‘example.home.arpa.’. Because ‘home.arpa.’ is used by all homnets, it has no global meaning, and names published under the domain ‘home.arpa’ cannot be used outside of the homenet on which they are published.

How to publish names outside of the homenet is out of scope for this document. However, in order to address the problem of validating names published on the homenet using DNSSEC, it is necessary that the homenet have a globally valid delegation from the root. This allows hosts on the homenet to validate names published on the homenet using the DNS root trust anchor ([RFC4033] section 3.1).

It is not necessary that this delegation work for hosts off the homenet. HNRs implementing this specification do not answer queries from outside the homenet; however, when a validating resolver inside the homenet attempts to validate the chain of trust up to the root zone, the chain of trust will validate correctly, because the answer given for internally-available zones will be signed by a DS record that is present in the delegation externally.

If there is a valid delegation from the root, the homenet domain will be the name of the delegated domain. By default, there will be no delegation from the root; in this case, the homenet domainname will be ‘home.arpa.’

In addition to the homenet domain, names are needed for reverse lookups. These names are dependent on the IP addressing used on the homenet. If the homenet is addressed with IPv4, a reverse domain corresponding to the IPv4 subnet [RFC1034] section 5.2.1 should be constructed. For example, if the homenet is allocating local IP addresses out of net 10 [RFC1918], a domain, ’10.in-addr.arpa’ would be required. Like ’home.arpa.’, ’10.in-addr.arpa’ is a locally-served zone, and has no validity outside of the homenet.

If the homenet is addressed with IPv6, it is expected to have a unique local address prefix. The reverse mapping domain for hosts on any link in the subnet will be a subdomain of the reverse zone for the subset of the ULA prefix that is being advertised on that link. Every service on the homenet that supports IPv6 is expected to be reachable at an address that is configured using the ULA prefix. Therefore there is no need for any IPv6 reverse zone to be populated other than the ULA zone. So for example if the homenet’s ULA prefix is fc00:2001:db8::/48, then the reverse domain name for the homenet would end in ’8.b.d.0.1.0.0.2.0.0.d.f.ip6.arpa’.
5. Authority

There are two types of authoritative name service on the homenet. Every link on the homenet has a zone that is a subdomain of the homenet’s primary domain. Authority for these zones is local to the HNR that is currently authoritative for that zone. The contents of these zones are served using DNSSD Discovery Proxy [I-D.ietf-dnssd-hybrid]. Consequently, there is no need for database replication in the case that a new HNR is elected; that HNR simply takes over the Discovery Relay function.

Name service for the homenet domain itself may be stateless or stateful. HNRs are not required to implement stateful service. If one or more HNRs on the homenet are capable of providing this service, then one of those HNRs is elected to act as the primary nameserver for the homenet domain; one or more HNRs may also act as secondary servers.

Name service for reverse mapping subdomains is only provided if one or more HNRs can provide stateful service. If no such server is present, the reverse mapping subdomains are not served. If stateful servers are present, the primary and secondary servers for these subdomains will be the same as for the homenet domain.

5.1. Reachability

Whether the homenet domain is a global domain name or not, HNRs answering queries for domains on the homenet do not respond to queries from off the homenet unless configured to do so. Exposing services on the homenet for browsing off the homenet creates many opportunities for security issues; as such, even an HNR configured to answer queries from prefixes off the homenet do not provide answers for names of devices on the homenet unless configured to do so. How reachability of names published on the homenet is managed is out of scope for this document: an HNR implementing only this document checks the source address of every query to see if it is within a prefix belonging to the homenet; if not, the HNR does not answer the query.

5.2. Link Names

Each link must have a name. These names are determined using HNCP. Each router will have zero or more wired links, each of which must be labeled. In addition, each router will have zero or more wireless links. Each of these links will be named by the frequency band the link supports, 2.4ghz or 5ghz.
The HNR is named using its manufacturer name. If, as is likely, two or more HNRs from the same manufacturer are present on a homenet, then the HNR name is made up of the manufacturer name plus as many hexadecimal digits as are required from the HNRs link layer addresses so as to disambiguate them.

When shipping multiple HNRs as a kit, manufacturers are advised to arrange that each HNR has a different number in the lowest four bits of the link-layer address. Manufacturers are also advised to print that link layer address, in full, somewhere on the outside of the HNR where it can be seen by the user. Since most HNRs will have more than one interface, the manufacturer should be consistent in choosing which link-layer address is printed on the outside and used to identify the router.

The name given to a link is the name of the HNR, plus a hyphen (‘-’), plus name of the interface of that HNR that is attached to the link. In the event that this name must be displayed to the user, this should give the user enough information to figure out which link is being referenced. In the event that the HNR that is providing authoritative service for that link changes, the link name changes. This should only happen if the network topology changes.

If the appearance of a new HNR requires that the name of an existing HNR change, then the names of all the links managed by that existing HNR change to reflect the new name.

5.3. Authoritative name service for the homenet domain

All HNRs must be capable of providing authoritative name service for the homenet domain. HNRs that provide only stateless authoritative service publish the information that is required for hosts to do DNS Service Discovery over DNS, using the local resolver as a DNSSD Discovery Broker.

Some contents are required for the homenet domain, whether it is stateful or stateless.

- Every link on the homenet has a name that is a subdomain of the homenet domain. The zone associated with the homenet domain contains a delegation for each of these subdomains.

- In order for DNSSD service discovery to work, a default browsing domain must be published. The default browsing domain is simply the homenet domain.

- If DNSSD SRP is supported (that is, if stateful authoritative service is present), then an SRV record must be published, along
with a list of available registration zones containing exactly one
entry, for the homenet domain ([I-D.sctl-service-registration]
section 2).

Also if DNSSD SRP is supported, then one or more A and/or AAAA
records must be published under the name that the SRV record
points to, which should be a single label subdomain of the homenet
domain.

Both stateful and stateless authoritative servers provided by HNRs
must support DNS Stateful Operations [I-D.ietf-dnsop-session-signal]
and DNS Push [I-D.ietf-dnssd-push] for the names for which they are
authoritative.

5.4. Authoritative name service for per-link subdomains of the homenet
domain

Per-link subdomains of the homenet domain are served by DNSSD
Discovery Proxies. Although these proxies generally do caching, no
long-lived state is kept by them. DNSSD Discovery Proxies running on
HNRs must support DNS Stateful Operations and DNS Push.

5.5. Authoritative name service for the ULA reverse mapping domain

The ULA reverse mapping domain itself is only published if stateful
name service is available. It is represented as a single zone, which
contains no delegations: every reverse mapping for an address in the
ULA prefix is simply published in the ULA zone.

In order to permit registration of reverse mappings in this domain,
it must contain an SRV record for the label _homenet-rrp._tcp at the
top level, pointing to the primary server for the domain.

5.6. Authoritative name service for the RFC1918 reverse mapping domains

If IPv4 service is being provided on the homenet, and if stateful
name service is being provided on the homenet, then either one or
sixteen reverse mapping zones for the RFC1918 prefix in use must be
provided. If more than one RFC1918 prefix is in use, reverse mapping
zones for all such prefixes must be provided.

Like the ULA reverse mapping zone, the RFC1918 reverse mapping zones
must each contain an SRV record on the label _homenet-rrp._tcp at the
top level, pointing to the name of the primary server for the zone.

The RFC1918 reverse mapping zone contains the entire address space of
the RFC1918 prefix that is in use on the homenet. Section 3 of
RFC1918 defines three prefixes that may be used. The homenet will
use all of one of these three prefixes. Of these, the 172.16.0.0
prefix is subdivided on a 12-bit boundary, and therefore must be
represented as 16 separate zones. The 10.0.0.0/8 and 192.168.0.0/16
prefixes are each represented as a single zone.

The zone to be updated is therefore the 10.in-addr.arpa zone for all
addresses in 10.0.0.0/8, and the 168.192.in-addr.arpa zone for all
addresses in 192.168.0.0/16. For addresses in the 172.16.0.0/12
prefix, the zone to be updated is the subdomain of 172.in-addr.arpa
that corresponds to bits 8-11 of the prefix: a number between 16 and
31, inclusive.

Also like the ULA zone, the RFC1918 reverse mapping zones contain no
delegations: if there is a single zone, then every reverse mapping
published for an address in the RFC1918 prefix in use on the homenet
is published directly under this zone. If there are sixteen zones,
each address is published in its respective zone. Because the zone
172.in-addr.arpa is not available to be served locally, its locally
served subdomains are simply served individually with no delegation.

6. Resolution

Name resolution on the homenet must accomplish two tasks: resolving
names that are published on the homenet, and resolving names that are
published elsewhere. This is accomplished by providing several
functional layers.

1. The set of caching nameservers provided by the ISP or ISPs
through which the homenet gains access to the global internet, if
any (homenets can operate standalone as well).

2. The set of stateful name servers on the homenet that are
authoritative for the homenet domain as a whole, and for any
reverse mapping zones that are provided by the homenet. This
layer is optional, and may or may not be present. If present, it
is provided by one or more HNRs on the homenet that support
stateful service.

3. The set of stateless name servers on the homenet that are
authoritative for the homenet domain as a whole. These are not
used if one or more stateful servers are present.

4. The set of stateless DNSSD Discovery Proxies that are
authoritative for each of the links in the homenet.

5. A DNS routing proxy. Hereafter we refer to this as the DNS
proxy.
The reason that these are described as layers is that it’s quite possible that all of the DNS services on the homenet might be provided by a single service listening on port 53; how the request is routed then depends on the question being asked. So the services described as running on HNRs are treated as functional blocks which may be connected internally, if the question being asked can be answered directly by the HNR that received it, or they may be separate name servers running on different HNRs, if the question can be answered within the homenet, or it may be that the HNR receiving the query forwards it to an ISP caching name server.

The routing works as follows. When a request is received (opcode=0, Q/R=0), the DNS proxy looks at the owner name in the question part of the message.

- If the name is a subdomain of the homenet domain, the query is local.
- If the name is a subdomain of a locally-valid ULA reverse mapping domain, the query is local.
- If the name is a subdomain of a locally valid RFC1918 reverse mapping zone, the query is local.
- If the name is a subdomain of any locally-served zone, as defined in Locally Served DNS Zones [localzones], but is not otherwise identified as local, the response is NXDOMAIN.
- Otherwise, the query is not local.

Local queries are further divided. If the query is for a link subdomain, the DNS proxy consults the table that maps per-link subdomains to the HNRs that serve them. Either the HNR that serves this link subdomain is the HNR that received the question, or not. If it is, then the DNS proxy passes the query directly to the local DNSSD Discovery Proxy. Otherwise, it forwards the query to the DNSSD Discovery Proxy on the HNR that is providing Discovery Proxy service for that link.

If the query is for the homenet subdomain, and stateful authoritative service for the homenet subdomain is present on the homenet, then either the HNR receiving the query provides stateful authoritative service, or not. If it does, then the query is passed directly to the local authoritative server. If not, then the HNR looks in the table of authoritative servers generated by HNCP and forwards the request to one of these servers. Queries for the reverse mapping zones are handled the same way.
Otherwise, the query is examined to see if it contains an EDNS(0) Provisioning Domain option. If not, it round-robined across the resolvers provided by each ISP in such a way that each ISP is tried in succession, and the same ISP is not asked the same question repeatedly. If the query does contain the EDNS(0) Provisioning Domain option, then that option is used to select which ISP’s resolvers are used for the round robin.

6.1. Round Robin

There are several cases above where there may be a choice of servers to which to forward queries. It’s assumed that when the query can be satisfied by the HNR that received it, round robin ing is not required. If there is a specific HNR that is responsible for a particular link, then round robin ing is likewise not required. However, if the query is for a stateful authoritative server, and the HNR that received it does not provide this service, and there is more than one HNR on the homenet that does provide the service, the HNR that received the query round robins it across the available set of HNRs that could answer it.

Similarly, if the query is to be sent to an ISP’s resolver, and the ISP has provided more than one resolver, round robin ing is done across the set of resolvers provided by that ISP. If the query is to be attempted at every ISP, then that is accomplished by round-robin ing in such a way that each ISP is tried in succession, rather than all the resolvers at one ISP, and then all the resolvers at the next ISP, and so on.

6.2. Retransmission

For queries that can’t be resolved locally by the HNR that received them, retransmission as described in [RFC1035] is performed.

6.3. DNS Stateful Operations and DNS Push

DNS proxies on HNRs are required to support DNS Stateful Operations and DNS Push. When a DNS Push operation is requested on a name that can be satisfied by the HNR that received it, it is handled locally. When such an operation is requested on a name that is local to the homenet, but can’t be satisfied by the HNR that received it, a DNS Stateful operation is started with the HNR that is responsible for it.
6.4. Multicast DNS

In addition to consulting the local resolver, hosts on the homenet may attempt to discover services directly using Multicast DNS. HNRs may filter out incoming Multicast DNS queries, forcing the client to do service discovery using the DNS protocol. If such filtering is not done, the client will be able to discover services on the link to which it is attached, but will not be able to discover services elsewhere.

It is believed that all currently-available hosts support DNSSD using the DNS protocol. Support for mDNS on the local link is therefore not required. However, if an mDNS query returns the same answer as the DNS protocol query, this is not expected to be a problem.

6.5. Host behavior

Hosts that support the RA Provisioning Domain option direct queries to the name server(s) of the provisioning domain they will use for communication using the EDNS(0) provisioning domain option. In practice this means that a host that supports PvDs will keep a set of provisioning information for each prefix that it received from the router, and will either choose a prefix to use based on its own criteria, or will attempt to connect using every PvD at once or in sequence. Answers to queries sent for a particular provisioning domain will only be used with source addresses for prefixes that are in that provisioning domain.

7. Publication

Names are published either using Multicast DNS Service Discovery [RFC6762] or DNSSD Service Registration Protocol ([I-D.sctl-service-registration]). Reverse mappings are published using Homenet Reverse Mapping Update Protocol Section 7.2.

7.1. DNSSD Service Registration Protocol

HNRs that provide stateful authoritative service also publish information acquired using DNSSD Service Registration Protocol [I-D.sctl-service-registration]. DNSSD SRF does not explicitly support population of the reverse zone; hosts that wish to provide reverse mapping information must first establish their hostname using DNSSD SRF; once established, the key used to authenticate the DNSSD SRF update is also used to update the reverse name.

Support for SRF provides several advantages over DNSSD Discovery Proxy. First, DNSSD SRF provides a secure way of claiming service names. Second, a claimed name is valid for the entire network.
covered by the SRP service, not just an individual link, as is the case with mDNS. Third, SRP does not use multicast, and is therefore more reliable on links with constrained multicast support [I-D.ietf-mboned-ieee802-mcast-problems].

Support for the DNSSD SRP service is not sufficient to achieve full deployment of DNSSD SRP: it is also necessary that services advertise using DNSSD SRP. Requiring such support is out of scope for this document; our goal is simply to specify a way in which DNSSD SRP can be supported on homenets, so that as adoption of SRP increases on devices providing service, it can actually be used.

7.2. Homenet Reverse Mapping Update Protocol

This is an extension to the DNSSD Service Registration protocol. The purpose is to allow for updates of reverse mappings. Hosts wishing to publish reverse mappings first publish their hostname using DNSSD SRP. When this process has successfully completed, the host can add reverse mappings to the ULA reverse mapping domain and to the RFC1918 reverse mapping domain, if present.

7.2.1. Adding ULA reverse mappings

The host first determines the ULA prefix. If there is more than one ULA prefix active, the ULA prefix with the longest preferred lifetime is used. A ULA prefix can be identified because it matches the prefix fc00::/7 ([RFC4193] section 3.1). The actual prefix is then the first 48 bits of the advertised prefix or the IP address in that prefix.

Because the ULA reverse mapping zone contains no delegations, all updates go to that one zone. To determine where to send the updates, the host first queries the SRV record under the label _homenet-rrp._tcp at the top of the ULA reverse mapping zone. It then uses the name contained in the SRV record to look up A and/or AAAA records to which to send the update.

The update is then signed using SIG(0) with the key that was used for the DNSSD SRP registration. The update is then sent using DNS Update [RFC2136] to one of the IP addresses received during the A/AAAA resolution step. The update is sent using TCP; if a TCP connection to one of the addresses fails, each subsequent address is tried in succession; if none of the addresses is reachable, the update fails, and may be retried after a reasonable period (on the order of an hour) has elapsed.
7.2.2. Adding RFC1918 reverse mappings

RFC1918 reverse mapping updates use the same mechanism as ULA reverse mapping updates. The host must first determine which zone to update, as described earlier in Section 5.6. Once the zone has been determined, the reverse mapping is updated as described in Section 7.2.1.

8. Host Configuration

Each HNR provides a Homenet DNS Proxy. When an HNR provides the DNS resolver IP address to hosts on the link using RA, DHCPv4 or DHCPv6, it provides its own address. The IPv4 address that it provides is a valid IPv4 address on the link to which the host is attached. The IPv6 address it provides is an address in the homenet’s ULA prefix that is valid on the link to which the host is attached.

When sending router advertisements, the homenet includes the PvD ID RA option [I-D.ietf-intarea-provisioning-domains] in each RA. Because the PvD ID RA option can only be sent once per RA message, if the homenet is connected to more than one ISP, the prefixes for each ISP must be advertised in different RA options. In this case, the prefix for the ULA should also be sent in a separate RA.

If the configuration received from the ISP includes a Domain Name (DHCPv4) or Domain Search List (DHCPv4 or DHCPv6) option, the domain name provided is used to identify the PvD. In the case of Domain Search List options, if there is more than one, the first one is used. For the ULA prefix, the homenet domain is used to identify the PvD.

In order to facilitate DNSSD bootstrapping, any DHCPv4, DHCPv6 or RA Domain Search List options contain only a single domain name, the homenet domain. This allows hosts to quickly bootstrap DNS Service Discovery using the local domain name, as described in [RFC6763] section 11.

9. Globally Unique Names

Homenets are not required to have globally unique names. Homenets operating according to this specification do not publish names in such a way that they can be resolved by hosts that aren’t on the homenet. However, such names are useful for DNSSEC validation.

There are three ways that homenets can get global names:

1. They can be manually configured by the user. How this is done is out of scope for this document.
2. They can publish a delegation with the ISP, using a Homenet Delegation Registration Protocol Section 11.

3. They can publish a delegation with some other provider, using Homenet Delegation Registration Protocol Section 11. How this is configured is out of scope for this document.

Homenets are also not required to support global delegations for reverse mapping of global IPv4 and IPv6 addresses. How this would be done is out of scope for this document.

10. DNSSEC Validation

DNSSEC validation for ‘home.arpa’ requires installing a per-homenet trust anchor on the host, and is therefore not practical. Validation for locally-served reverse zones for the ULA and RFC1918 addresses would likewise require a trust anchor to be installed on the host, and likewise are not practical.

If DNSSEC validation is to be done for the homenet, the homenet must acquire a global name, and must be provided with a secure delegation. Secure delegations must also be provided from the homenet domain to each of the per-link subdomains.

Each HNR on a homenet generates its own private/public key pair that can serve as a trust anchor. These keys are shared using HNCP [RFC7788]. HNRs MUST NOT use pre-installed keys: each HNR MUST generate its own key. The HNR responsible for authoritative Discovery Proxy service on a particular link signs the zone for that link; delegations from the homenet domain zone to each per-link subdomain zone include a DS record signed by the ZSK of the homenet zone.

10.1. How trust is established

Every HNR has its own public/private key pair. A DS record for each such public key is published in the delegation for the homenet domain. If stateless authoritative service for the homenet zone is being provided, then each HNR signs its own homenet zone. The signed zone should be very stable, although the delegations may change when the network topology changes. The HNR can therefore sign the zone using its private key whenever it changes. Each HNR will have a copy of the zone signed with a different key, but since all of the ZSKs are present in the DS RRset at the delegation point, validation will succeed.

If stateful authoritative service is being provided, the HNR that is acting as primary signs the zone, and all the secondaries serve
copies acquired using zone transfers. If the HNR that is primary goes away, then a secondary becomes primary and signs the zone before beginning to provide service. Again, since all of the HNR’s public keys exist in the DS RRset at the delegation, the zone can be validated.

11. Homenet Delegation Registration Protocol

Homenet Delegation Registration Protocol (HDeRP) operates similarly to DNSSD Service Registration Protocol. When a homenet is not connected to an ISP that supports HDeRP, and then an ISP connection becomes available, the HNR that is connected to the ISP determines whether HDeRP is available. This is done by first determining the ISP domain.

If the connection to the ISP is IPv4-only, this will be either the DHCPv4 Domain Name option or, if not present, the only domain name in the DHCPv4 Domain Name Search List option. If the Domain Name Search List option contains more than one name, HDeRP is not supported by the ISP.

If the connection to the ISP is dual-stack or IPv6-only, then the DHCPv6 Domain Search List option obtained through DHCPv6 Prefix Delegation is used. If it is not present, or if it contains more than one domain name, HDeRP is not supported by the ISP.

Once the ISP domain has been discovered, the HNR looks for an SRV record owned by the name _homenet-derp._tcp under the ISP domain. If this is not present, HDeRP is not supported. If the SRV record is present, then the HNR looks for A and AAAA records on the hostname provided in the HNR. If present, these are used when attempting the update.

The HNR then constructs a DNS update. The DNS update creates a delegation for the zone home.arpa, with a DS record for each HNR on the homenet, containing that HNR’s public key. The HNR doing the update lists its key as the first key in the DS RRset. The update is signed using SIG(0) with the private key of the HNR that is constructing it. As with DNSSD SRP, the update includes an Update Lease EDNS(0) option, specifying a key lifetime of a week.

The HNR then attempts to connect to the hostname provided in the SRV record, in a round-robin fashion across the set of IP addresses discovered during the A/AAAA lookup phase. When it has successfully connected, it sends the DNS update.

The HDeRP server validates the update by checking the SIG(0) signature of the update against the first key in the DS RRset. If
the update is successfully validated, then the server generates a
domain name and sends a reply back to the HNR on the same TCP
connection, including the NOERROR (0) RCODE, and including in the
query section the actual domain name that was generated.

This domain name then becomes the homenet name. Subsequent updates
use the homenet name rather than 'home.arpa'. It is not necessary
that the same HNR do the update; if a different HNR does the update,
it lists its public key first in the DS RRset, and signs the update
using its private key.

The HDeRP is responsible for removing the delegation if it is not
refreshed for the length of its lifetime. HNRs should attempt to
refresh the delegation when half the lifetime has experienced, then
again at 5/8ths, and again at 7/8ths of the lifetime. If the ISP
becomes unavailable, and a different ISP becomes available that
supports HDeRP, the homenet should migrate to the new ISP.

12. Using the Local Namespace While Away From Home

This document does not specify a way for service discovery to be
performed on the homenet by devices that are not directly connected
to a link that is part of the homenet.

13. Expected Host Behavior

It is expected that hosts will fall into one of two categories: hosts
that are able to discover DNS-SD browsing domains, and hosts that are
not. Hosts that can discover DNS-SD browsing domains can be expected
to successfully use service discovery across the entire homenet.
Hosts that do not will only be able to discover services on the
particular local subnet of the homenet to which they happen to be
attached at any given time.

This is not considered to be a problem, since it is understood by the
authors that the vast majority of hosts that are capable of doing
mDNS discovery are also capable of doing DNS-SD discovery as
described in [RFC6763].

14. Management Considerations

This architecture is intended to be self-healing, and should not
require management. That said, a great deal of debugging and
management can be done simply using the DNS Service Discovery
protocol.
15. Privacy Considerations

Privacy is somewhat protected in the sense that names published on the homenet are only visible to devices connected to the homenet. This may be insufficient privacy in some cases.

The privacy of host information on the homenet is left to hosts. Various mechanisms are available to hosts to ensure that tracking does not occur if it is not desired. However, devices that need to have special permission to manage the homenet will inevitably reveal something about themselves when doing so.

16. Security Considerations

There are some clear issues with the security model described in this document, which will be documented in a future version of this section. A full analysis of the avenues of attack for the security model presented here have not yet been done, and must be done before the document is published.

17. IANA considerations

17.1. Homenet Reverse Registration Protocol

IANA is requested to add a new entry to the Service Names and Port Numbers registry for homenet-rrp with a transport type of tcp. No port number is to be assigned. The reference should be to this document, and the Assignee and Contact information should reference the authors of this document. The Description should be as follows:

Availability of Homenet Reverse Registration Protocol service for a given domain is advertised using an SRV record with an owner name of "_homenet-rrp._tcp.<domain>." in that domain, which gives the target host and port where Homenet Reverse Registration service is provided for the named domain.

17.2. Homenet Delegation Registration Protocol

IANA is requested to add a new entry to the Service Names and Port Numbers registry for homenet-derp with a transport type of tcp. No port number is to be assigned. The reference should be to this document, and the Assignee and Contact information should reference the authors of this document. The Description should be as follows:

 Availability of Homenet Delegation Registration Protocol service for a given domain is advertised using an SRV record with an owner name of "_homenet-derp._tcp.<domain>." in that domain, which gives the
target host and port where Homenet Delegation Registration service is provided for the named domain.

17.3. Unique Local Address Reserved Documentation Prefix

IANA is requested to add an entry to the IPv6 Special-Purpose Address Registry for the prefix fc00:2001:db8::/48. The Name shall be "Unique Local Address Documentation Prefix." The reference RFC will be this document, once published. The date will be the date the entry was added. All other fields will be the same as for the Documentation prefix, 2001:db8::/32.

18. References

18.1. Normative References

[I-D.ietf-dnsop-session-signal]

[I-D.ietf-dnssd-hybrid]
Cheshire, S., "Discovery Proxy for Multicast DNS-Based Service Discovery", draft-ietf-dnssd-hybrid-08 (work in progress), March 2018.

[I-D.ietf-dnssd-push]

[I-D.ietf-intarea-provisioning-domains]

[I-D.sctl-service-registration]

[localzones]


18.2. Informative References


Authors’ Addresses

Ted Lemon
Nibhaya Consulting
P.O. Box 958
Brattleboro, Vermont 05301
United States of America

Email: mellon@fugue.com

Daniel Migault
Ericsson
8400 boulevard Decarie
Montreal, QC H4P 2N2
Canada

Email: daniel.migault@ericsson.com

Stuart Cheshire
Apple Inc.
1 Infinite Loop
Cupertino, California 95014
USA

Phone: +1 408 974 3207
Email: cheshire@apple.com
Abstract

This document considers the requirements for adding a Thread mesh to an existing home network, where the infrastructure of that existing home network was designed with no prior knowledge of Thread, and provides no special or unusual facilities designed to support this.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 12, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

[Authors’ note: As an initial draft, in places this document presents several alternatives that are being considered. We invite feedback and comments to help evolve this document.]

Because multicast can be inefficient and unreliable [Mcast], work is taking place to enable DNS-Based Service Discovery [RFC6763] to operate with less reliance on multicast [Roadmap]. One current target use case for this work is Thread [Thread] wireless mesh networking.

Thread wireless mesh networking uses IEEE 802.15.4 radios, which use little power, and are suitable for battery-powered devices. The Thread protocol organizes the network nodes into a mesh, typically with a Thread border router that connects the mesh to the home network. For the purposes of this document we will refer to the home network, be it Ethernet, or Wi-Fi, or both, or other similar technologies, simply as the home network. The home network forms a backbone to which one or more Thread mesh networks connect via Thread border routers.

Existing work describes how DNS-Based Service Discovery can be performed using unicast on such a network. Devices on the Thread mesh offering services use Service Registration Protocol [RegProt] to register their services at a Service Registration Server. Devices seeking to discover these services send unicast queries to the Service Registration Server using unicast DNS [RFC1034] [RFC1035] for single individual queries, and using DNS Push Notifications [Push] where ongoing change notification is required.

Certain configuration information is required for this to work. Devices on the Thread mesh offering services need to know what names to use when registering those services, and to what address they should send their service registrations. Devices seeking to discover these services need to know what names to use when constructing their queries, and to what address they should send those queries. In addition, IPv6 address prefixes need to be chosen and configured for both the home network and the Thread mesh network(s), and communicated, in order to facilitate unicast communication between clients and the services they have discovered.

For proof-of-concept experiments, the necessary information can be configured manually, and this has been done successfully. For deployment, we need to determine how the necessary information will be learned and configured automatically in real-world scenarios.
The Thread wireless mesh protocol includes mechanisms to perform configuration tasks on the mesh, like electing a lead router, and communicating this information to devices on the Thread mesh. This existing mechanism can be extended fairly simply to facilitate the necessary Service Registration Protocol configuration tasks. The Service Registration Protocol [RegProt] specification document advocates that if a device offering a service has no information regarding the domain in which to register that service, it should use the special use domain name [RFC6761] "services.arpa" to indicate that the Service Registration Server should substitute a domain of its choice, and that same mechanism is recommended in this case.

On the home network side of the Thread border router, there are several possibilities. The necessary configuration tasks could be handled by the home network’s main gateway, by a collection of Homenet routers using HNCP, or independently by the Thread border router.

### 1.1. Configuration by Main Gateway

The home network’s main gateway could handle the necessary configuration tasks.

The main gateway could be responsible for selecting IPv6 address prefixes for each of the links in the network, and communicating that information to the relevant routers, perhaps using DHCPv6 prefix delegation.

The information about what domain name to use for service discovery can be communicated to client devices on the home network using DHCP or IPv6 router advertisement options. Currently this is done using the respective "DNS search list" options, though new options for this specific purpose could be defined in the future. If the user has a registered globally unique domain name for this purpose and the main gateway is configured with this information, then that domain name can be communicated to client devices. In the absence of a registered globally unique domain name the special-use domain name [RFC6761] "home.arpa" [RFC8375] should be used as a reasonable out-of-the-box default.

Similarly, the information about what DNS recursive resolver to use can be communicated to client devices on the home network using DHCP or IPv6 router advertisement options. If the main gateway configures its own address as the DNS recursive resolver for clients to use, it can ensure that operations using "home.arpa" are handled appropriately. Sending queries for names within "home.arpa" to public recursive resolvers on the Internet will not yield useful results, because names within "home.arpa" are not globally unique.
They are unique only within the local network, and hence queries for those names need to be handled within the local network.

1.2. Configuration using HNCP

A complex home network with multiple links and multiple routers could be managed using HNCP. However, at this time, this remains a future possibility, since it is likely to be some time before HNCP is widely used.

1.3. Self-Configuration by Thread Border Routers

The previous two scenarios assume that the home network’s main gateway, or its HNCP mesh, has specific capabilities to configure and support the use of unicast DNS service discovery.

An alternative scenario is to consider the case where a Thread border router is added to an existing home network, which has no special mechanisms in place to support this operation.

The remainder of this document explores this scenario.

One possibility to keep in mind is that in this scenario, adding one or more Thread border routers to an existing home network that doesn’t itself use HNCP, the Thread border router(s) themselves could use HNCP as the protocol to communicate between each other to coordinate their operation on the network.
2. Adding Thread Mesh to Existing Home Network

This section explores the requirements for connecting a Thread mesh, via a Thread border router, to a typical home network. For the purposes of this document, it is assumed that the existing network infrastructure is fixed and cannot be changed. Changes or new functionality may be implemented as required in the Thread devices on the Thread mesh, in the Thread border router, or in the devices on the home network that will be communicating with the Thread devices. Since this document assumes no changes to the existing network infrastructure, it is necessary to state the assumptions about that existing network infrastructure.

We consider a typical home network to be a single multicast/broadcast domain. If there are multiple Ethernet switches or Wi-Fi access points, they are configured so that together they provide a single logical link. If there is a NAT gateway, it is at the network egress point. (A NAT gateway on the path between two devices on a home network makes communication between those two devices considerably more complicated, and this document does not address that case.)

In order to add a Thread mesh usefully to an existing home network, several things need to be accomplished. The goal is to accomplish these objectives without requiring changes to the existing infrastructure on that home network.

1. Delivery of unicast traffic in both directions, from home network to Thread mesh, and from Thread mesh to home network.

2. Enabling services offered by devices on the Thread mesh to be discovered by clients seeking those services.

3. Enabling services offered by devices on the home network to be discovered by clients on the Thread mesh seeking those services.
2.1. Unicast Delivery

If HNCP were in use on the network, then Thread border routers could participate and use HNCP to manage their configuration.

In the absence of HNCP, Thread border routers need a way to self-configure, without assistance from the home network’s existing infrastructure.

What is proposed is that Thread border routers select a 32-bit random number, and use that to construct an IPv6 ULA prefix for their connected mesh, which is very likely to be unique in that home. The Thread border router then advertises reachability to that IPv6 ULA prefix onto the home network using IPv6 Router Advertisements. In principle, this can be done independently of whatever other IPv6 prefixes, if any, are being advertised on the home network by the home network’s existing main gateway. [It has been reported, however, that there are at least some client devices that do not properly handle receiving multiple independent IPv6 Router Advertisements like this, so some investigation and bug fixing may be required to make this work.]

In the case where there are multiple independent Thread border routers connected to the home network, serving separate Thread meshes, we want to avoid the situation where two different Thread border routers choose the same randomly-selected IPv6 ULA prefix. This can be achieved by having the Thread border routers listen for IPv6 Router Advertisements before selecting their IPv6 ULA prefix. If a Thread border router receives IPv6 Router Advertisements offering reachability to its IPv6 ULA prefix via a different path, then this indicates that an inadvertent duplication may have occurred, and the Thread border router should select a different IPv6 ULA prefix for its mesh.
2.2. Discovery of Services on the Thread Mesh

To facilitate unicast discovery of services on the Thread mesh, four things need to be determined:

1. How a device on the Thread mesh, offering services, knows what parent domain name to use when registering services.

2. How that device knows to what address its service registrations should be sent (if the name does not fall under a registered globally unique domain name).

3. How a client device, on the Thread mesh or the home network, seeking services, knows what parent domain name to use querying to discover services.

4. How that device knows to what address its unicast service discovery queries should be sent (if the name does not fall under a registered globally unique domain name).

Devices on the Thread mesh should register services using the parent domain "services.arpa". This indicates that the Service Registration Server should automatically substitute an appropriate domain.

The Thread mesh management protocol can be used to configure devices on the Thread mesh with the address to which they should send their service registrations.

The Thread border router needs to communicate, to devices on the home network, how they can discover services on the Thread mesh.

This involves communicating the service discovery domain. In principle, this could be a registered globally unique domain name, it which case the normal DNS delegation mechanism using NS records allows the client to discover what server is authoritative for those names. In many cases though, the Thread border router will not have a registered globally unique domain name allocated. To provide out-of-the-box automatic operation, the Thread border router needs to be able to generate its own locally unique name to use. The special use domain name "local" is not suitable, because of its implied semantics that these names are resolved using link-local multicast DNS [RFC6762]. The special use domain name "home.arpa" is not suitable, because of its implied coordination via HNCP, and the home network’s main gateway may not support HNCP [RFC8375]. To provide out-of-the-box automatic operation, this document proposes a new special use domain name "adhoc.arpa" for this purpose. By default a Thread border router will use the name "thread.adhoc.arpa". If this name is
already in use on the home network, then a new unique name will be 
selected, such as "thread-2.adhoc.arpa".

The Thread border router needs to communicate the service discovery 
domain to peers on the home network. In the case that the service 
discovery domain falls under the "adhoc.arpa" name, the Thread border 
router also needs to communicate that queries for these names need to 
be sent to the Thread border router directly, not to the client’s 
default DNS recursive resolver.

Three alternatives are being considered

1. Use link-local Multicast DNS queries and records to convey the 
service discovery domain, and optionally the address to which 
queries should be sent.

2. Define a new IPv6 router advertisement option to communicate the 
service discovery domain, and optionally the address to which 
queries should be sent.

3. Add this information to the Multiple Provisioning Domain Router 
Advertisement option [RFC7556] [MPvD].

One question to answer is whether the Multicast DNS records or IPv6 
router advertisement options would directly convey the domain name to 
use for service discovery, or a base name used to derive domain 
enumeration queries of the form lb._dns-sd._udp.<domain> [RFC6763].

Another question is whether to use a single Multicast DNS record or 
IPv6 router advertisement option that communicates both the domain 
name and the address to use for queries, or a pair of records/ 
options, one carrying the name to use for service discovery, and a 
second, if necessary, associating an "adhoc.arpa" name with the 
address to use for those queries.

With the appropriate configuration methods defined, and implemented 
on client devices, client devices on the home network would discover 
additional domains to use for service discovery, and send appropriate 
service discovery queries to Thread border routers on the home 
network.

The same discovery domain, and optionally the address to which 
queries should be sent, is communicated to client devices on the 
Thread mesh using the Thread mesh management protocol.
2.3. Discovery of Services on the Home Network

To facilitate devices on the Thread mesh discovering services offered on the home network, advertised using Multicast DNS, a Discovery Proxy [DisProx] is implemented in the Thread border router.

As above in Section 2.2 the Thread mesh management protocol is used to communicate a discovery domain, and the address to which queries should be sent for that discovery domain, to client devices on the Thread mesh.

The address in this case is the address of the Thread border router. The discovery domain could be some generated unique name under "adhoc.arpa", or it could be some fixed special use domain name. The fixed name could be a simple fixed string like "lan.arpa", or it could be a special reserved name under "adhoc.arpa" such as "services.adhoc.arpa". The latter is probably preferred because it avoids having to request multiple special use domain names [RFC6761]. Alternatively, we could organize all the required special names such that they fall under a single reserved special use domain name "services.arpa."

When the Thread border router receives a query for a name under this discovery domain, it uses the Discovery Proxy mechanism [DisProx] to perform Multicast DNS queries on behalf of the client, returning the results to the client.
3. Security Considerations

As an informational document, this document introduces no new Security Considerations of its own. The various referenced documents each describe their own relevant Security Considerations as appropriate.

4. Domain Name Reservation Considerations

As currently envisaged, this document may end up requesting a special use domain name [RFC6761]. If so, once the special properties are fully determined, this section will be populated with the appropriate text.

5. Informative References


Authors’ Addresses

Stuart Cheshire
Apple Inc.
One Apple Park Way
Cupertino, California 95014
USA

Phone: +1 (408) 996-1010
Email: cheshire@apple.com

Ted Lemon
Nibbhaya Consulting
P.O. Box 958
Brattleboro, Vermont 05301
United States of America

Email: mellon@fugue.com