
Network Working Group E. Maler, Ed.
Internet-Draft ForgeRock
Intended status: Informational M. Machulak
Expires: August 17, 2019 HSBC
 J. Richer
 Bespoke Engineering
 T. Hardjono
 MIT
 February 13, 2019

 User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization
 draft-maler-oauth-umagrant-00

Abstract

 This specification defines a means for a client, representing a
 requesting party, to use a permission ticket to request an OAuth 2.0
 access token to gain access to a protected resource asynchronously
 from the time a resource owner authorizes access.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Maler, et al. Expires August 17, 2019 [Page 1]

Internet-Draft February 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 4
 1.2. Roles . 4
 1.3. Abstract Flow . 5
 1.3.1. Authorization Process 7
 2. Authorization Server Metadata 8
 3. Flow Details . 9
 3.1. Client Requests Resource Without Providing an Access
 Token . 9
 3.2. Resource Server Responds to Client’s Tokenless Access
 Attempt . 9
 3.2.1. Resource Server Response to Client on Permission
 Request Success 10
 3.2.2. Resource Server Response to Client on Permission
 Request Failure 10
 3.3. Client Seeks RPT on Requesting Party’s Behalf 11
 3.3.1. Client Request to Authorization Server for RPT . . . 11
 3.3.2. Client Redirect of Requesting Party to Authorization
 Server for Interactive Claims-Gathering 13
 3.3.3. Authorization Server Redirect of Requesting Party
 Back to Client After Interactive Claims-Gathering . . 15
 3.3.4. Authorization Assessment and Results Determination . 16
 3.3.5. Authorization Server Response to Client on
 Authorization Success 18
 3.3.6. Authorization Server Response to Client on
 Authorization Failure 20
 3.4. Client Requests Resource and Provides an RPT 23
 3.5. Resource Server Responds to Client’s RPT-Accompanied
 Resource Request . 23
 3.6. Authorization Server Refreshes RPT 24
 3.7. Client Requests Token Revocation 24
 4. Profiles and Extensions 24
 5. Security Considerations 25
 5.1. Cross-Site Request Forgery 25
 5.2. RPT and PCT Exposure 26
 5.3. Strengthening RPT Protection Using Proof of Possession . 27
 5.4. Credentials-Guessing 28
 5.5. Permission Ticket Management 28
 5.6. Naive Implementations of Default-Deny Authorization . . . 28
 5.7. Requirements for Pre-Established Trust Regarding Claim
 Tokens . 29

Maler, et al. Expires August 17, 2019 [Page 2]

Internet-Draft February 2019

 5.8. Profiles and Trust Establishment 29
 6. Privacy Considerations 30
 6.1. Policy Condition Setting, Time-to-Live Management, and
 Removal of Authorization Grants 30
 6.2. Requesting Party Information at the Authorization Server 30
 6.3. Resource Owner Information at the Resource Server 31
 6.4. Profiles and Trust Establishment 31
 7. IANA Considerations . 31
 7.1. Well-Known URI Registration 31
 7.1.1. Registry Contents 31
 7.2. OAuth 2.0 Authorization Server Metadata Registry 32
 7.2.1. Registry Contents 32
 7.3. OAuth 2.0 Dynamic Client Registration Metadata Registry . 32
 7.3.1. Registry Contents 32
 7.4. OAuth 2.0 Extension Grant Parameters Registration 33
 7.4.1. Registry Contents 33
 7.5. OAuth 2.0 Extensions Error Registration 34
 7.5.1. Registry Contents 34
 7.6. OAuth Token Type Hints Registration 35
 7.6.1. Registry Contents 35
 8. Acknowledgments . 35
 9. References . 36
 9.1. Normative References 36
 9.2. Informative References 37
 Authors’ Addresses . 38

1. Introduction

 This specification defines an extension OAuth 2.0 [RFC6749] grant.
 The grant enhances OAuth capabilities in the following ways:

 o The resource owner authorizes protected resource access to clients
 used by entities that are in a _requesting party_ role. This
 enables party-to-party authorization, rather than authorization of
 application access alone.

 o The authorization server and resource server interact with the
 client and requesting party in a way that is _asynchronous_ with
 respect to resource owner interactions. This lets a resource
 owner configure an authorization server with authorization grant
 rules (policy conditions) at will, rather than authorizing access
 token issuance synchronously just after authenticating.

 For example, bank customer (resource owner) Alice with a bank account
 service (resource server) can use a sharing management service
 (authorization server) hosted by the bank to manage access to her
 various protected resources by spouse Bob, accounting professional
 Charline, and and financial information aggregation company Decide

Maler, et al. Expires August 17, 2019 [Page 3]

Internet-Draft February 2019

 Account, all using different client applications. Each of her bank
 accounts is a protected resource, and two different scopes of access
 she can control on them are viewing account data and accessing
 payment functions.

 An OPTIONAL second specification, [UMAFedAuthz], defines a means for
 an UMA-enabled authorization server and resource server to be loosely
 coupled, or federated, in a resource owner context. This
 specification, together with [UMAFedAuthz], constitutes UMA 2.0.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Unless otherwise noted, all parameter names and values are case
 sensitive. JSON [RFC7159] data structures defined in this
 specification MAY contain extension parameters that are not defined
 in this specification. Any entity receiving or retrieving a JSON
 data structure SHOULD ignore extension parameters it is unable to
 understand. Extension names that are unprotected from collisions are
 outside the scope of this specification.

1.2. Roles

 The UMA grant enhances the OAuth definitions of entities in order to
 accommodate the requesting party role.

 resource owner
 An entity capable of granting access to a protected resource, the
 "user" in User-Managed Access. The resource owner MAY be an end-
 user (natural person) or MAY be a non-human entity treated as a
 person for limited legal purposes (legal person), such as a
 corporation.

 requesting party
 A natural or legal person that uses a client to seek access to a
 protected resource. The requesting party may or may not be the
 same party as the resource owner.

 client
 An application that is capable of making requests for protected
 resources with the resource owner’s authorization and on the
 requesting party’s behalf.

 resource server

Maler, et al. Expires August 17, 2019 [Page 4]

Internet-Draft February 2019

 A server that hosts resources on a resource owner’s behalf and is
 capable of accepting and responding to requests for protected
 resources.

 authorization server
 A server that protects, on a resource owner’s behalf, resources
 hosted at a resource server.

1.3. Abstract Flow

 The UMA grant enhances the abstract protocol flow of OAuth.

 Figure 1 shows an example flow illustrating a variety of messaging
 paths and artifacts. The resource owner entity and its
 communications with the authorization server are included for
 completeness, although policy condition setting is outside the scope
 of this specification and communications among the other four
 entities are asynchrjonous with respect to resource owner actions.
 Further, although both claims pushing and interactive claims
 gathering are shown, both might not typically be used in one
 scenario.

 requesting authorization resource resource
 party client server server owner
 | | | | |
 | | |Set policy| |
 | | |conditions (anytime)|
 | | |<- - - - - - - - - -|
 | |Resource request (no access token) | |
 | |------------------------------------->| |
 | |401 response with initial permission | |
 | |ticket, authz server location | |
 | |<-------------------------------------| |
 | |Access token (RPT) request | | |
 | |with permission ticket, | | |
 | |claim token (push claims) | | |
 | |-------------------------->| | |
 | | +----|Authz | |
 | | +--->|assessment| |
 | |403 response with new | | |
 | |permission ticket, | | |
 | |need_info error, | | |
 | |redirect_user hint | | |
 | |<--------------------------| | |
 |Redirect | | | |
 |user with | | | |
 |permission | | | |
 |ticket | | | |

Maler, et al. Expires August 17, 2019 [Page 5]

Internet-Draft February 2019

 |<-----------| | | |
 |Follow redirect to authz server | | |
 |--------------------------------------->| | |
 |Interactive claims gathering | | |
 |<- - - - - - - - - - - - - - - - - - - >| | |
 |Redirect back with new permission | | |
 |ticket | | |
 |<---------------------------------------| | |
 |Follow | | | |
 |redirect | | | |
 |to client | | | |
 |----------->| | | |
 | |RPT request with permission| | |
 | |ticket | | |
 | |-------------------------->| | |
 | | +----|Authz | |
 | | +--->|assessment| |
 | |Response with RPT and PCT | | |
 | |<--------------------------| | |
 | |Resource request with RPT | | |
 | |------------------------------------->| |
 | |Protected resource | | |
 | |<-------------------------------------| |

 Figure 1: Example Flow

 Following are key concepts relevant to this specification, as
 illustrated in the figure:

 requesting party token (RPT) An OAuth access token associated with
 the UMA grant. An RPT is unique to a requesting party, client,
 authorization server, resource server, and resource owner.

 permission Authorized access to a particular resource with some
 number of scopes bound to that resource. A permission ticket
 represents some number of requested permissions. An RPT
 represents some number of granted permissions. Permissions are
 part of the authorization server’s process and are opaque to the
 client.

 permission ticket A correlation handle representing requested
 permissions that is created and maintained by the authorization
 server, initially passed to the client by the resource server, and
 presented by the client at the token endpoint and during
 requesting party redirects.

Maler, et al. Expires August 17, 2019 [Page 6]

Internet-Draft February 2019

 authorization process The process through which the authorization
 server determines whether it should issue an RPT to the client on
 the requesting party’s behalf, based on a variety of inputs. A
 key component of the process is authorization assessment. (See
 Section 1.3.1.)

 claim A statement of the value or values of one or more attributes
 of an entity. The authorization server typically needs to collect
 and assess one or more claims of the requesting party or client
 against policy conditions as part of protecting a resource. The
 two methods available for UMA claims collection are claims pushing
 and interactive claims gathering. Note: Claims collection might
 involve authentication for unique user identification, but
 depending on policy conditions might additionally or instead
 involve the collection of non-uniquely identifying attributes,
 authorization for some action (for example, see Section 3.3.3), or
 other statements of agreement.

 claim token A package of claims provided directly by the client to
 the authorization server through claims pushing.

 persisted claims token (PCT) A correlation handle issued by an
 authorization server that represents a set of claims collected
 during one authorization process, available for a client to use in
 attempting to optimize a future authorization process.

 Note: How the client acquired knowledge of the resource server’s
 interface and the specific endpoint of the desired protected resource
 is outside the scope of this specification. For example, the
 resource server might have a programmatic API or it might serve up
 simple web pages, and the resource owner might have advertised the
 endpoint publicly on a blog or other website, listed it in a
 discovery service, or emailed a link to a particular intended
 requesting party.

1.3.1. Authorization Process

 The authorization process involves the following activities:

 o Claims collection. Claims pushing by a client is defined in
 Section 3.3.1, and interactive claims gathering with an end-user
 requesting party is defined in Section 3.3.2.

 o Authorization assessment (as defined in Section 3.3.4).
 Authorization assessment involves the authorization server
 assembling and evaluating policy conditions, scopes, claims, and
 any other relevant information sourced outside of UMA claims
 collection flows, in order to mitigate access authorization risk.

Maler, et al. Expires August 17, 2019 [Page 7]

Internet-Draft February 2019

 o Authorization results determination (as defined in Section 3.3.4).
 The authorization server either returns a success code (as defined
 in Section 3.3.5), an RPT, and an optional PCT, or an error code
 (as defined in Section 3.3.6). If the error code is "need_info"
 or "request_submitted", the authorization server provides a
 permission ticket, giving the client an opportunity to continue
 within the same authorization process (including engaging in
 further claims collection).

 Different choices of claims collection methods, other inputs to
 authorization assessment, and error codes might be best suited for
 different deployment ecosystems. For example, where no pre-
 established relationship is expected between the resource owner’s
 authorization server and the requesting party, initial requesting
 party redirection might be a useful pattern, at which point the
 authorization server might either authenticate the requesting party
 locally or serve as a relying party for a remote identity provider.
 Where a common authorization server functions as an identity provider
 for all resource owners and requesting parties, having the client
 push claim tokens sourced from that central server itself with a pre-
 negotiated format and contents might be a useful pattern.

2. Authorization Server Metadata

 The authorization server supplies metadata in a discovery document to
 declare its endpoints. The client uses this discovery document to
 discover these endpoints for use in the flows defined in Section 3.

 The authorization server MUST make a discovery document available.
 The structure of the discovery document MUST conform to that defined
 in [OAuthMeta]. The discovery document MUST be available at an
 endpoint formed by concatenating the string "/.well-known/
 uma2-configuration" to the "issuer" metadata value defined in
 [OAuthMeta], using the well-known URI syntax and semantics defined in
 [RFC5785]. In addition to the metadata defined in [OAuthMeta], this
 specification defines the following metadata for inclusion in the
 discovery document:

 claims_interaction_endpoint
 OPTIONAL. A static endpoint URI at which the authorization
 server declares that it interacts with end-user requesting
 parties to gather claims. If the authorization server also
 provides a claims interaction endpoint URI as part of its
 "redirect_user" hint in a "need_info" response to a client on
 authorization failure (see Section 3.3.6), that value overrides
 this metadata value. Providing the static endpoint URI is
 useful for enabling interactive claims gathering prior to any

Maler, et al. Expires August 17, 2019 [Page 8]

Internet-Draft February 2019

 pushed-claims flows taking place, for example, for gathering
 authorization for subsequent claim pushing (see Section 3.3.2).

 uma_profiles_supported
 OPTIONAL. UMA profiles and extensions supported by this
 authorization server. The value is an array of string values,
 where each string value is a URI identifying an UMA profile or
 extension. As discussed in Section 4, an authorization server
 supporting a profile or extension related to UMA SHOULD supply
 the specification’s identifying URI (if any) here.

 If the authorization server supports dynamic client registration, it
 MUST allow client applications to register "claims_redirect_uri"
 metadata, as defined in Section 3.3.2, using the following metadata
 field:

 claims_redirect_uris
 OPTIONAL. Array of one or more claims redirection URIs.

3. Flow Details

3.1. Client Requests Resource Without Providing an Access Token

 The client requests a protected resource without providing any access
 token.

 Note: This process does not assume that any relevant policy
 conditions have already been defined at the authorization server.

 For an example of how the resource server can put resources under the
 protection of an authorization server, see [UMAFedAuthz].

 Example of a client request at a protected resource without providing
 an access token:

 GET /users/alice/album/photo.jpg HTTP/1.1 Host:
 photoz.example.com ...

3.2. Resource Server Responds to Client’s Tokenless Access Attempt

 The resource server responds to the client’s tokenless resource
 request.

 The resource server MUST obtain a permission ticket from the
 authorization server to provide in its response, but the means of
 doing so is outside the scope of this specification. For an example
 of how the resource server can obtain the permission ticket, see
 [UMAFedAuthz].

Maler, et al. Expires August 17, 2019 [Page 9]

Internet-Draft February 2019

 The process of choosing what permissions to request from the
 authorization server may require interpretation and mapping of the
 client’s resource request. The resource server SHOULD request a set
 of permissions with scopes that is reasonable for the client’s
 resource request.

 Note: In order for the resource server to know which authorization
 server to approach for the permission ticket and on which resource
 owner’s behalf, it needs to derive the necessary information using
 cues provided by the structure of the API where the resource request
 was made, rather than by an access token. Commonly, this information
 can be passed through the URI, headers, or body of the client’s
 request. Alternatively, the entire interface could be dedicated to
 the use of a single resource owner and protected by a single
 authorization server.

 See Section 5.5 for permission ticket security considerations.

3.2.1. Resource Server Response to Client on Permission Request Success

 If the resource server is able to provide a permission ticket from
 the authorization server, it responds to the client by providing a
 "WWW-Authenticate" header with the authentication scheme "UMA", with
 the "issuer" URI from the authorization server’s discovery document
 in an "as_uri" parameter and the permission ticket in a "ticket"
 parameter.

 For example:

 HTTP/1.1 401 Unauthorized WWW-Authenticate: UMA
 realm="example", as_uri="https://as.example.com",
 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de" ...

3.2.2. Resource Server Response to Client on Permission Request Failure

 If the resource server is unable to provide a permission ticket from
 the authorization server, then it includes a header of the following
 form in its response to the client: "Warning: 199 - "UMA
 Authorization Server Unreachable"".

 For example:

 HTTP/1.1 403 Forbidden Warning: 199 - "UMA Authorization
 Server Unreachable" ...

 Without an authorization server location and permission ticket, the
 client is unable to continue.

Maler, et al. Expires August 17, 2019 [Page 10]

Internet-Draft February 2019

3.3. Client Seeks RPT on Requesting Party’s Behalf

 The client seeks issuance of an RPT.

 This process assumes that:

 o The client has obtained a permission ticket and an authorization
 server location from the resource server.

 o The client has retrieved the authorization server’s discovery
 document as needed.

 o The client has obtained a client identifier or a full set of
 client credentials as appropriate, either statically or
 dynamically (for example, through [RFC7591] or
 [OIDCDynClientReg]). This grant works with clients of both
 confidential and public types.

 Initiation of this process has two options. One option is for the
 client to request an RPT from the token endpoint immediately, as
 defined in Section 3.3.1. Claim pushing is available at this
 endpoint. The other option, if the authorization server’s discovery
 document statically provided a claims interaction endpoint, is for
 the client to redirect the requesting party immediately to that
 endpoint for interactive claims gathering, as defined in
 Section 3.3.2.

3.3.1. Client Request to Authorization Server for RPT

 The client makes a request to the token endpoint by sending the
 following parameters:

 grant_type REQUIRED. MUST be the value
 "urn:ietf:params:oauth:grant-type:uma-ticket".

 ticket REQUIRED. The most recent permission ticket received by the
 client as part of this authorization process.

 claim_token OPTIONAL. If this parameter is used, it MUST appear
 together with the "claim_token_format" parameter. A string
 containing directly pushed claim information in the indicated
 format. It MUST be base64url encoded unless specified otherwise
 by the claim token format. The client MAY provide this
 information on both first and subsequent requests to this
 endpoint. The client and authorization server together might need
 to establish proper audience restrictions for the claim token
 prior to claims pushing. See Section 5.7 and Section 6.2 for
 security and privacy considerations regarding pushing of claims.

Maler, et al. Expires August 17, 2019 [Page 11]

Internet-Draft February 2019

 claim_token_format OPTIONAL. If this parameter is used, it MUST
 appear together with the "claim_token" parameter. A string
 specifying the format of the claim token in which the client is
 directly pushing claims to the authorization server. The string
 MAY be a URI. Examples of potential types of claim token formats
 are [OIDCCore] ID Tokens and SAML assertions.

 pct OPTIONAL. If the authorization server previously returned a PCT
 along with an RPT, the client MAY include the PCT in order to
 optimize the process of seeking a new RPT. Given that some claims
 represented by a PCT are likely to contain identity information
 about a requesting party, a client supplying a PCT in its RPT
 request MUST make a best effort to ensure that the requesting
 party using the client now is the same as the requesting party
 that was associated with the PCT when it was issued. See
 Section 5.7 and Section 6.2 for additional security and privacy
 considerations regarding persistence of claims. The client MAY
 use the PCT for the same requesting party when seeking an RPT for
 a resource different from the one sought when the PCT was issued,
 or a protected resource at a different resource server entirely.
 See Section 5.2 for additional PCT security considerations. See
 Section 3.3.5 for the form of the authorization server’s response
 with a PCT.

 rpt OPTIONAL. Supplying an existing RPT (which MAY be expired)
 gives the authorization server the option of upgrading that RPT
 instead of issuing a new one (see Section 3.3.5.1 for more about
 this option).

 scope OPTIONAL. A string of space-separated values representing
 requested scopes. For the authorization server to consider any
 requested scope in its assessment, the client MUST have been pre-
 registered for the same scope with the authorization server. The
 client should consult the resource server’s API documentation for
 details about which scopes it can expect the resource server’s
 initial returned permission ticket to represent as part of the
 authorization assessment (see Section 3.3.4).

 Example of a request message with no optional parameters (line breaks
 are shown only for display convenience):

POST /token HTTP/1.1 Host: as.example.com Authorization:
 Basic jwfLG53^sad$#f ...
 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket
 &ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de

Maler, et al. Expires August 17, 2019 [Page 12]

Internet-Draft February 2019

 Example of a request message that includes an existing RPT for
 upgrading, a scope being sought that was previously registered with
 the authorization server, and a PCT and a claim token for
 consideration in the authorization process:

POST /token HTTP/1.1 Host: as.example.com Authorization:
 Basic jwfLG53^sad$#f ...
 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket
 &ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de
 &claim_token=eyj0...
 &claim_token_format=http%3A%2F%2Fopenid.net%2Fspecs%2Fopenid-connect
-core-1_0.html%23IDToken
 &pct=c2F2ZWRjb25zZW50
 &rpt=sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv
 &scope=read

 This specification provides a means to define profiles of claim token
 formats for use with UMA (see Section 4). The authorization server
 SHOULD document the profiles it supports in its discovery document.

3.3.2. Client Redirect of Requesting Party to Authorization Server for
 Interactive Claims-Gathering

 The client redirects an end-user requesting party to the
 authorization server’s claims interaction endpoint for one or more
 interactive claims-gathering processes as the authorization server
 requires. These can include direct interactions, such as account
 registration and authentication local to the authorization server as
 an identity provider, filling out a questionnaire, or asking the user
 to authorize subsequent collection of claims by interaction or
 pushing, and persistent storage of such claims (for example, as
 associated with a PCT). Interactions could also involve further
 redirection, for example, for federated (such as social)
 authentication at a remote identity provider, and other federated
 claims gathering. See Section 5.7 and Section 6.2 for security and
 privacy considerations regarding pushing and persistence of claims.

 The client might have initiated redirection immediately on receiving
 an initial permission ticket from the resource server, or, for
 example, in response to receiving a "redirect_user" hint in a
 "need_info" error (see Section 3.3.6).

 In order for the client to redirect the requesting party immediately
 on receiving the initial permission ticket from the resource server,
 this process assumes that the authorization server has statically
 declared its claims interaction endpoint in its discovery document.

Maler, et al. Expires August 17, 2019 [Page 13]

Internet-Draft February 2019

 The client constructs the request URI by adding the following
 parameters to the query component of the claims interaction endpoint
 URI using the "application/x-www-form-urlencoded" format:

 client_id REQUIRED. The client’s identifier issued by the
 authorization server.

 ticket REQUIRED. The most recent permission ticket received by the
 client as part of this authorization process.

 claims_redirect_uri REQUIRED if the client has pre-registered
 multiple claims redirection URIs or has pre-registered no claims
 redirection URI; OPTIONAL only if the client has pre-registered a
 single claims redirection URI. The URI to which the client wishes
 the authorization server to direct the requesting party’s user
 agent after completing its interaction. The URI MUST be absolute,
 MAY contain an "application/x-www-form-urlencoded"-formatted query
 parameter component that MUST be retained when adding additional
 parameters, and MUST NOT contain a fragment component. The client
 SHOULD pre-register its "claims_redirect_uri" with the
 authorization server, and the authorization server SHOULD require
 all clients, and MUST require public clients, to pre-register
 their claims redirection endpoints (see Section 2). Claims
 redirection URIs are different from the redirection URIs defined
 in [RFC6749] in that they are intended for the exclusive use of
 requesting parties and not resource owners. Therefore,
 authorization servers MUST NOT redirect requesting parties to pre-
 registered redirection URIs defined in [RFC6749] unless such URIs
 are also pre-registered specifically as claims redirection URIs.
 If the URI is pre-registered, this URI MUST exactly match one of
 the pre-registered claims redirection URIs, with the matching
 performed as described in Section 6.2.1 of [RFC3986] (Simple
 String Comparison).

 state RECOMMENDED. An opaque value used by the client to maintain
 state between the request and callback. The authorization server
 includes this value when redirecting the user agent back to the
 client. The use of this parameter is for preventing cross-site
 request forgery (see Section 5.1 for further security
 information).

 Example of a request issued by a client application (line breaks are
 shown only for display convenience):

GET /rqp_claims?client_id=some_client_id
 &ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de
 &claims_redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect
_claims
 &state=abc HTTP/1.1 Host: as.example.com

Maler, et al. Expires August 17, 2019 [Page 14]

Internet-Draft February 2019

3.3.3. Authorization Server Redirect of Requesting Party Back to Client
 After Interactive Claims-Gathering

 At the conclusion of a successful interaction with the requesting
 party, the authorization server returns the requesting party to the
 client, adding the following parameters to the query component of the
 claims redirection URI using the "application/x-www-form-urlencoded"
 format:

 ticket REQUIRED. A permission ticket that allows the client to make
 further requests to the authorization server during this
 authorization process. The value MUST NOT be the same as the one
 the client used to make its request.

 state OPTIONAL. The same state value that the client provided in
 the request. It MUST be present if and only if the client
 provided it (see Section 5.1 for further security information).

 Note: Interactive claims-gathering processes are outside the scope of
 this specification. The purpose of the interaction is for the
 authorization server to gather information for its own authorization
 assessment purposes. This redirection does not involve sending any
 of the information back to the client.

 The authorization server MAY use interactive claims-gathering to
 request authorization from the requesting party for persisting claims
 across authorization processes. Such persisted claims will be
 represented by a PCT issued to the client in a subsequent step.

 The client MUST ignore unrecognized response parameters. If the
 request fails due to a missing, invalid, or mismatching claims
 redirection URI, or if the client identifier is missing or invalid,
 the authorization server SHOULD inform the requesting party of the
 error and MUST NOT automatically redirect the user agent to the
 invalid redirection URI.

 If the request fails for reasons other than a missing or invalid
 claims redirection URI, the authorization server informs the client
 by adding an "error" parameter to the query component of the claims
 redirection URI as defined in Section 4.1.2.1 of [RFC6749].

 Example of a response issued by an authorization server (line breaks
 are shown only for display convenience):

 HTTP/1.1 302 Found Location:
 https://client.example.com/redirect_claims?
 ticket=cHJpdmFjeSBpcyBjb250ZXh0LCBjb250cm9s&state=abc

Maler, et al. Expires August 17, 2019 [Page 15]

Internet-Draft February 2019

3.3.4. Authorization Assessment and Results Determination

 When the authorization server has received a request for an RPT from
 a client as defined in Section 3.3.1, it assesses whether the client
 is authorized to receive the requested RPT and determines the
 results.

 The authorization server MUST apply the following conceptual
 authorization assessment calculation in determining authorization
 results. Note: As this calculation is internal to authorization
 server operations, its particulars are outside the scope of this
 specification.

 1. Assemble a set called _RegisteredScopes_ containing the scopes
 for which the client is pre-registered (either dynamically or
 through some static process) at the authorization server.
 Assemble a set called _RequestedScopes_ containing the scopes the
 client most recently requested at the token endpoint. The
 permission ticket that was presented by the client at the token
 endpoint represents some number of resources, each with some
 number of scopes; for each of those resources, assemble a set
 called _TicketScopes(resource)_ containing the scopes associated
 with that resource.

 2. For each resource in the permission ticket, determine a final set
 of requested scopes as follows:
 _RequestedScopes(resource)={TicketScopes(resource) ∪
 {RegisteredScopes ∩ RequestedScopes}}_. Treat each scope in
 {RegisteredScopes ∩ RequestedScopes} as matching any
 available scope associated with a resource found in the
 permission ticket.

 3. For each _RequestedScopes(resource)_ set, determine all operative
 policy conditions, and claims and other relevant information
 serving as input to them, and evaluate its authorization status.

 4. For each scope in _RequestedScopes(resource)_ that passes the
 evaluation, add it to a set called
 CandidateGrantedScopes(resource).

 Note: Claims and other information gathered during one authorization
 process may become out of date in terms of their relevance for future
 authorization processes. The authorization server is responsible for
 managing such relevance wherever information associated with a PCT,
 or other persistently stored information, is used as input to
 authorization, including policy conditions themselves.

Maler, et al. Expires August 17, 2019 [Page 16]

Internet-Draft February 2019

 Note: Since the authorization server’s policy expression and
 evaluation capabilities are outside the scope of this specification,
 any one implementation might take a simple or arbitrarily complex
 form, with varying abilities to combine or perform calculations over
 claims and their values. For example, logical operations such as
 accepting "either claim value A or claim value B" as correct are
 possible to implement.

 In the authorization results phase, the authorization server examines
 each _CandidateGrantedScopes(resource)_ set to determine whether to
 issue an RPT and what permissions should be associated with it. If
 all _RequestedScopes(resource)_ sets can be granted, then the
 authorization server subsequently responds with a success code and
 issues an RPT containing _CandidateGrantedScopes_ for each resource.

 Otherwise, the authorization server subsequently issues either an RPT
 containing _CandidateGrantedScopes_ for each resource, or one of the
 error codes, as appropriate. The reason for the two options is that
 granting only partial scopes might not be useful for the client’s and
 requesting party’s purposes in seeking authorization for access. The
 choice of error depends on policy conditions and the authorization
 server’s implementation choices. The conditions for the "need_info",
 "request_denied", and "request_submitted" error codes are dependent
 on authorization assessment and thus these codes might be more likely
 than the others to be issued subsequent to such a calculation.

 The following example illustrates authorization assessment and
 partial results.

 o The resource server has three of the resource owner’s resources of
 interest to the client and requesting party, "photo1" and "photo2"
 with scopes "view", "resize", "print", and "download", and "album"
 with scopes "view", "edit", and "download". It considers "photo1"
 and "photo2" to be logically "inside" "album".

 o Though the exact contents of RPTs, permissions, and permission
 requests are opaque to the client, the resource server has
 documented its API, available scopes, and permission requesting
 practices. For example, if the client requests an album resource,
 it expects that the resource server will request a permission for
 the album with a scope that approximates the attempted client
 operation, but will also request permissions for all the photos
 "inside" the album, with "view" scope only.

 o The client has a pre-registered scope of "download" with the
 authorization server. This enables the client later to request
 this scope dynamically on behalf of its requesting party from the

Maler, et al. Expires August 17, 2019 [Page 17]

Internet-Draft February 2019

 token endpoint. The authorization server assembles the set
 RegisteredScopes with contents of scope "download".

 o The client requests the album resource in an attempt to edit it,
 so the resource server obtains a permission ticket with three
 permissions in it: for "album" with a scope of "edit", and for
 "photo1" and "photo2", each with a scope of "view". The
 authorization server assembles the following sets:
 TicketScopes("album") containing "edit",
 TicketScopes("photo1") containing "view", and
 TicketScopes("photo2") containing "view".

 o While asking for an RPT at the token endpoint, the client requests
 "download" scope on the requesting party’s behalf. The
 authorization server determines the contents of the following
 sets: _RequestedScopes_("album") containing "edit" and "download",
 RequestedScopes("photo1") containing "view" and "download", and
 RequestedScopes("photo2") containing "view" and "download".

 o The resource owner has set policy conditions that allow access by
 this particular requesting party only to "photo1" and only for
 "view" scope.

 o Based on the authorization server’s authorization assessment
 calculation, it determines the contents of the following sets:
 CandidateGrantedScopes("album") containing no scopes,
 CandidateGrantedScopes("photo1") containing "view", and
 CandidateGrantedScopes("photo2") containing no scopes. This
 adds up to less than in the corresponding _RequestedScopes_ sets.
 The authorization server therefore has a choice whether to issue
 an RPT (in this case, containing a permission for "photo1" with
 "view" scope) or an error (say, "request_denied", or
 "request_submitted" if has a way to notify the resource owner
 about the album editing resource request and seek an added policy
 covering it).

 See Section 5.6 for a discussion of authorization implementation
 threats.

3.3.5. Authorization Server Response to Client on Authorization Success

 If the authorization server’s assessment process results in issuance
 of permissions, it issues the RPT with which it has associated the
 permissions by using the successful response form defined in
 Section 5.1 of [RFC6749].

 The authorization server MAY return a refresh token. See Section 3.6
 for more information about refreshing an RPT.

Maler, et al. Expires August 17, 2019 [Page 18]

Internet-Draft February 2019

 The authorization server MAY add the following parameters to its
 response:

 pct OPTIONAL. A correlation handle representing claims and other
 information collected during this authorization process, which the
 client is able to present later in order to optimize future
 authorization processes on behalf of a requesting party. The PCT
 MUST be unguessable by an attacker. The PCT MUST NOT disclose
 claims from the requesting party directly to possessors of the
 PCT. Instead, such claims SHOULD be associated by reference to
 the PCT or expressed in an encrypted format that can be decrypted
 only by the authorization server that issued the PCT. See
 Section 3.3.2 for more information about the end-user requesting
 party interaction option. See Section 5.2 for additional PCT
 security considerations.

 upgraded OPTIONAL. Boolean value. If the client submits an RPT in
 the request and the authorization server includes the permissions
 of the RPT from the request as part of the newly issued RPT, then
 it MUST set this value to "true". If it sets the value to "false"
 or the value is absent, the client MUST act as if the newly issued
 RPT does not include the permissions associated with the RPT from
 the request. (See Section 3.3.5.1.)

 The authorization server MAY include any of the parameters defined in
 Section 5.1 of [RFC6749] on its response, except that it SHOULD NOT
 include the "scope" parameter. This is because for an RPT’s
 permissions, each scope is associated with a specific resource, even
 though this association is opaque to the client. Note: The outcome
 of authorization assessment may result in expiration periods for
 RPTs, permissions, and refresh tokens that can affect the client’s
 later requests for refreshing the RPT.

 Example:

 HTTP/1.1 200 OK Content-Type: application/json ... {
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer" }

 Example with a PCT in the response:

 HTTP/1.1 200 OK Content-Type: application/json ... {
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer", "pct":"c2F2ZWRjb25zZW50" }

Maler, et al. Expires August 17, 2019 [Page 19]

Internet-Draft February 2019

3.3.5.1. Authorization Server Upgrades RPT

 The authorization server MAY implement RPT upgrading. The
 authorization server SHOULD document its practices regarding RPT
 upgrades and to act consistently with respect to RPT upgrades so as
 to enable clients to manage received RPTs efficiently.

 If the authorization server has implemented RPT upgrading, the client
 has submitted an RPT in its request, and the result is success, the
 authorization server adds the permissions from the client’s previous
 RPT to the RPT it is about to issue, setting the value of "upgraded"
 in its response containing the upgraded RPT to "true".

 If the authorization server is upgrading an RPT, and the RPT string
 is new rather than repeating the RPT provided by the client in the
 request, then the authorization server SHOULD revoke the existing
 RPT, if possible, and the client MUST discard its previous RPT. If
 the authorization server does not upgrade the RPT but issues a new
 RPT, the client MAY retain the existing RPT.

 Example with "upgraded" in the response:

 HTTP/1.1 200 OK Content-Type: application/json ... {
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer", "upgraded":true }

3.3.6. Authorization Server Response to Client on Authorization Failure

 If the client’s request to the token endpoint results in failure, the
 authorization server responds with an error, as defined in
 Section 5.2 of [RFC6749] and as follows.

 invalid_grant If the provided permission ticket was not found at the
 authorization server, or the provided permission ticket has
 expired, or any other original reasons to use this error code are
 found as defined in [RFC6749], the authorization server responds
 with the HTTP 400 (Bad Request) status code.

 invalid_scope At least one of the scopes included in the request
 does not match an available scope for any of the resources
 associated with requested permissions for the permission ticket
 provided by the client. The authorization server MAY also return
 this error when at least one of the scopes included in the request
 does not match a scope for which the client is pre-registered with
 the authorization server. The authorization server responds with
 the HTTP 400 (Bad Request) status code.

Maler, et al. Expires August 17, 2019 [Page 20]

Internet-Draft February 2019

 need_info The authorization server needs additional information in
 order for a request to succeed, for example, a provided claim
 token was invalid or expired, or had an incorrect format, or
 additional claims are needed to complete the authorization
 assessment. The authorization server responds with the HTTP 403
 (Forbidden) status code. It MUST include a "ticket" parameter,
 and it MUST also include either the "required_claims" parameter or
 the "redirect_user" parameter, or both, as hints about the
 information it needs.

 ticket REQUIRED. A permission ticket that allows the client to
 make a further request to the authorization server’s token
 endpoint as part of this same authorization process,
 potentially immediately. The value MUST NOT be the same as the
 one the client used to make its request.

 required_claims An array of objects that describe the required
 claims, with the following subparameters:

 claim_token_format OPTIONAL. An array of strings specifying a
 set of acceptable formats for a claim token pushed by the
 client containing this claim, as defined in Section 3.3.1.
 Any one of the referenced formats would satisfy the
 authorization server’s requirements. Each string MAY be a
 URI.

 claim_type OPTIONAL. A string, indicating the expected
 interpretation of the provided claim value. The string MAY
 be a URI.

 friendly_name OPTIONAL. A string that provides a human-
 readable form of the claim’s name. This can be useful as a
 "display name" for use in user interfaces in cases where the
 actual name is complex or opaque, such as an OID or a UUID.

 issuer OPTIONAL. An array of strings specifying a set of
 acceptable issuing authorities for the claim. Any one of
 the referenced authorities would satisfy the authorization
 server’s requirements. Each string MAY be a URI.

 name OPTIONAL. A string (which MAY be a URI) representing the
 name of the claim; the "key" in a key-value pair.

 redirect_user The claims interaction endpoint URI to which to
 redirect the end-user requesting party at the authorization
 server to continue the process of interactive claims gathering,
 as defined in Section 3.3.2. For example, the authorization
 server could require the requesting party to log in to an

Maler, et al. Expires August 17, 2019 [Page 21]

Internet-Draft February 2019

 account, or fill out a CAPTCHA to help prove humanness, or
 perform any number of other interactive tasks. If the
 requesting party is not an end-user, then no client action is
 possible on receiving the hint. If a static claims interaction
 endpoint was also provided in the authorization server’s
 discovery document, then this value overrides the static value.
 Providing a value in this response might be appropriate, for
 example, if the URI needs to be customized per requesting party
 with a query parameter.

 request_denied The client is not authorized to have these
 permissions. The authorization server responds with the HTTP 403
 (Forbidden) status code.

 request_submitted The authorization server requires intervention by
 the resource owner to determine whether the client is authorized
 to have these permissions. The authorization server responds with
 the HTTP 403 (Forbidden) status code. It MUST include a "ticket"
 parameter and MAY include an "interval" parameter.

 ticket REQUIRED. A permission ticket that allows the client to
 make one or more later polling requests to the token endpoint
 as part of this same authorization process, when the resource
 owner might have completed some approval (or denial) action.
 The value MUST NOT be the same as the one the client used to
 make its request.

 interval OPTIONAL. The minimum amount of time in seconds that
 the client SHOULD wait between polling requests to the token
 endpoint. See Section 5.5 for security considerations in
 scenarios involving polling and consequences for permission
 ticket lifetimes.

 Example when the permission ticket was not found or has expired:

 HTTP/1.1 400 Bad Request Content-Type: application/json
 Cache-Control: no-store ... { "error":"invalid_grant" }

 Example of a "need_info" response with hints about required claims:

HTTP/1.1 403 Forbidden Content-Type: application/json
 Cache-Control: no-store ... { "error":"need_info",
 "ticket":"ZXJyb3JfZGV0YWlscw==", "required_claims":[{
 "claim_token_format":[
 "http://openid.net/specs/openid-connect-core-1_0.html#IDToken"],
 "claim_type":"urn:oid:0.9.2342.19200300.100.1.3",
 "friendly_name":"email", "issuer":["https://example.com/idp"],
 "name":"email23423453ou453" }] }

Maler, et al. Expires August 17, 2019 [Page 22]

Internet-Draft February 2019

 Example of a "need_info" response with a hint to redirect the
 requesting party to a claims interaction endpoint:

HTTP/1.1 403 Forbidden Content-Type: application/json
 Cache-Control: no-store ... { "error":"need_info",
 "ticket":"ZXJyb3JfZGV0YWlscw==",
 "redirect_user":"https://as.example.com/rqp_claims?id=2346576421"
 }

 Example when the client was not authorized to have the permissions:

 HTTP/1.1 403 Forbidden Content-Type: application/json
 Cache-Control: no-store ... { "error":"request_denied" }

 Example when the authorization server requires resource owner
 intervention, including the optional "interval" parameter:

 HTTP/1.1 403 Forbidden Content-Type: application/json
 Cache-Control: no-store ... { "error":"request_submitted",
 "ticket?:?ZXJyb3JfZGV0YWlscw==", "interval": 5 }

3.4. Client Requests Resource and Provides an RPT

 The client requests the resource, now in possession of an RPT. The
 client uses [RFC6750] for a bearer token, and any other suitable
 presentation mechanism for an RPT of another access token type.

 Example of a client request for the resource carrying an RPT:

GET /users/alice/album/photo.jpg HTTP/1.1 Authorization:
 Bearer sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv Host: photoz.example.com
 ...

3.5. Resource Server Responds to Client’s RPT-Accompanied Resource
 Request

 The resource server responds to the client’s RPT-accompanied resource
 request.

 If the resource request fails, the resource server responds as if the
 request were unaccompanied by an access token, as defined in
 Section 3.2.

 The resource server MUST NOT give access in the case of an invalid
 RPT or an RPT associated with insufficient authorization.

Maler, et al. Expires August 17, 2019 [Page 23]

Internet-Draft February 2019

 For an example of how the resource server can introspect the RPT and
 its permissions at the authorization server prior to responding to
 the client’s request, see [UMAFedAuthz].

3.6. Authorization Server Refreshes RPT

 As noted in Section 3.3.5, when issuing an RPT, the authorization
 server MAY also issue a refresh token.

 Having previously received a refresh token from the authorization
 server, the client MAY use the refresh token grant as defined in
 [RFC6749] to attempt to refresh an expired RPT. If the client
 includes the "scope" parameter in its request, the authorization
 server MAY limit the scopes in the permissions associated with any
 resulting refreshed RPT to the scopes requested by the client.

 The authorization server MUST NOT perform an authorization assessment
 calculation on receiving the client’s request to refresh an RPT.

3.7. Client Requests Token Revocation

 If the authorization server presents a token revocation endpoint as
 defined in [RFC7009], the client MAY use the endpoint to request
 revocation of an RPT (access token), refresh token, or PCT previously
 issued to it on behalf of a requesting party. This specification
 defines the following token type hint value:

 pct Helps the authorization server optimize lookup of a PCT for
 revocation.

4. Profiles and Extensions

 An UMA profile restricts UMA’s available options. An UMA extension
 defines how to use UMA’s extensibility points. The two can be
 combined. Some reasons for creating profiles and extensions include:

 o A profile restricting options in order to tighten security

 o A profile/extension restricting options and adding messaging
 parameters for use with a specific industry API

 o A profile that documents a specific URI, format, and
 interpretation for pushed claim tokens (see Section 3.3.1)

 o An extension that defines additional metadata for the
 authorization server discovery document to define machine-readable
 usage details

Maler, et al. Expires August 17, 2019 [Page 24]

Internet-Draft February 2019

 The following actions are RECOMMENDED regarding the creation and use
 of profiles and extensions:

 o The creator of a profile or extension related to UMA SHOULD assign
 it a uniquely identifying URI.

 o The authorization server supporting a profile or extension related
 to UMA with such a URI SHOULD supply the identifying URI in its
 "uma_profiles_supported" metadata (see Section 2).

5. Security Considerations

 This specification relies mainly on OAuth 2.0 security mechanisms as
 well as transport-level security. Thus, implementers are strongly
 advised to read [BCP195] and the security considerations in [RFC6749]
 (Section 10) and [RFC6750] (Section 5) along with the security
 considerations of any other OAuth token-defining specifications in
 use, along with the entire [RFC6819] specification, and apply the
 countermeasures described therein. As well, implementers should take
 into account the security considerations in all other normatively
 referenced specifications.

 The following sections describe additional security considerations.

5.1. Cross-Site Request Forgery

 Redirection used for gathering claims interactively from an end-user
 requesting party (described in Section 3.3.2) creates the potential
 for cross-site request forgery (CSRF). This may be the result of an
 open redirect if the authorization server does not force the client
 to pre-register its claims redirection endpoint, and server-side
 artifact tampering if the client does not avail itself of the "state"
 parameter.

 A CSRF attack against the authorization server’s claims interaction
 endpoint can result in an attacker obtaining authorization for access
 through a malicious client without involving or alerting the end-user
 requesting party. The authorization server MUST implement CSRF
 protection for its claims interaction endpoint and ensure that a
 malicious client cannot obtain authorization without the awareness
 and involvement of the requesting party.

 If the client uses the interactive claims gathering feature, it MUST
 implement CSRF protection for its claims redirection URI. It SHOULD
 use the "state" parameter when redirecting the requesting party to
 the claims interaction endpoint. The value of the "state" parameter
 MUST be unguessable by an attacker. Once the authorization server
 redirects the requesting party back, with the required binding value

Maler, et al. Expires August 17, 2019 [Page 25]

Internet-Draft February 2019

 contained in the "state" parameter, the client MUST check that the
 value of the "state" parameter received is equal to the value sent in
 the initial redirection request. Depending on the type of
 application, a client has several methods for storing and later
 verifying the value of the "state" parameter in between the initial
 redirect and the eventual resulting request to the claims redirection
 URI, including storage in a server-side session-bound variable,
 cryptographic derivation from a browser cookie, or secure
 application-level storage. The client MUST treat requests containing
 an invalid or unknown "state" parameter value as an error.

 The "state" parameter SHOULD NOT include sensitive client or
 requesting party information in plain text, as it is transmitted
 through third-party components (the requesting party’s user agent)
 and could be stored insecurely.

5.2. RPT and PCT Exposure

 When a client redirects an end-user requesting party to the claims
 interaction endpoint, the client provides no a priori context to the
 authorization server about which user is appearing at the endpoint,
 other than implicitly through the permission ticket. Thus, a
 malicious client has the opportunity to switch end-users -- say,
 enabling malicious end-user Carlos to impersonate legitimate end-user
 Bob, who might be represented by a PCT already in that client’s
 possession and might even have authorized the issuance of that PCT --
 after the redirect completes and before it returns to the token
 endpoint to seek permissions.

 To mitigate this threat, the authorization server, with the support
 of the resource owner, should consider the following strategies in
 combination.

 o Require that the requesting party legitimately represent the
 wielder of the RPT on a legal or contractual level. This solution
 alone does not reduce the risk from a technical perspective.

 o Gather claims interactively from an end-user requesting party that
 demonstrate that some sufficiently strong level of authentication
 was performed.

 o Require claims to have a high degree of freshness in order for
 them to satify policy conditions.

 o Tighten time-to-live strategies around RPTs and their associated
 permissions (see Section 6.1).

Maler, et al. Expires August 17, 2019 [Page 26]

Internet-Draft February 2019

 The client MUST only share the RPT (access token) with the resource
 server and authorization server, as explained in Section 10.3 of
 [RFC6749], and thus MUST keep it confidential from the requesting
 party. Because a malicious requesting party (the user of the client
 in the UMA grant) may have incentives to steal an RPT that the
 resource owner (the user of the client in other OAuth grants) does
 not, this security consideration takes on especial importance.

 The PCT is similar to a refresh token in that it allows non-
 interactive issuance of access tokens. The authorization server and
 client MUST keep the PCT confidential in transit and storage, and
 MUST NOT share the PCT with any entity other than each other. The
 authorization server MUST maintain the binding between the PCT and
 the client to which it was issued.

 Given that the PCT represents a set of requesting party claims, a
 client supplying a PCT in its RPT request MUST make a best effort to
 ensure that the requesting party using the client now is the same as
 the requesting party that was associated with the PCT when it was
 issued. Different clients will have different capabilities in this
 respect; for example, some applications are single-user and perform
 no local authentication, associating all PCTs with the "current
 user", while others might have more sophisticated authentication and
 user mapping capabilities.

 If the authorization server has reason to believe that a PCT is
 compromised, for example, if the PCT has been supplied by a client
 that has "impossible geography" parameters, the authorization server
 should consider not using the claims based on that PCT in its
 authorization assessment.

5.3. Strengthening RPT Protection Using Proof of Possession

 After the client’s resource request with an RPT, assuming the client
 sent an RPT of the bearer style such as defined in [RFC6750], the
 resource server will have received from the client the entire secret
 portion of the token. This specification assumes only bearer-type
 tokens because they are the only type standardized as of this
 specification’s publication. However, to strengthen protection for
 RPTs using a proof-of-possession approach, the resource server could
 receive an RPT that consists of only a cryptographically signed token
 identifier, and then to validate the signature, it could, for
 example, submit the token identifier to the token introspection
 endpoint to obtain the necessary key information. The details of
 this usage are outside the scope of this specification.

Maler, et al. Expires August 17, 2019 [Page 27]

Internet-Draft February 2019

5.4. Credentials-Guessing

 Permission tickets and PCTs are additional credentials that the
 authorization server MUST prevent attackers from guessing, as defined
 in Section 10.10 of [RFC6749].

5.5. Permission Ticket Management

 Within the constraints of making permission ticket values
 unguessable, the authorization server MAY format the permission
 ticket however it chooses, for example, either as a random string
 that references data held on the server or by including data within
 the ticket itself.

 Permission tickets MUST be single-use. This prevents susceptibility
 to a session fixation attack.

 The authorization server MUST invalidate a permission ticket when the
 client presents the permission ticket to either the token endpoint or
 the claims interaction endpoint, or when the permission ticket
 expires, whichever occurs first.

 The client SHOULD check that the value of the "ticket" parameter it
 receives back from the authorization server in each response and each
 redirect of the requesting party back to it differs from the one it
 sent to the server in the initial request or redirect.

 If the authorization server has reason to believe that a permission
 ticket is compromised, for example, because it has seen the
 permission ticket before and it believes the first appearance was
 from a legitimate client and the second appearance is from an
 attacker, it should consider invalidating any access tokens based on
 this evidence.

 Given that scenarios involving the "request_submitted" error code are
 likely to involve polling intervals, the permission ticket needs to
 last long enough to give the client a chance to attempt a polling
 request, which then needs to figure into other permission ticket
 security considerations.

5.6. Naive Implementations of Default-Deny Authorization

 While a reasonable approach for most scenarios is to implement the
 classic stance of default-deny ("everything that is not expressly
 allowed is forbidden"), corner cases can inadvertently result in
 default-permit behavior. For example, it is insufficient to create
 default "empty" policy conditions stating "no claims are needed", and

Maler, et al. Expires August 17, 2019 [Page 28]

Internet-Draft February 2019

 then accept an empty set of supplied claims as sufficient for access
 during authorization assessment.

5.7. Requirements for Pre-Established Trust Regarding Claim Tokens

 When a client makes an RPT request, it has the opportunity to push a
 claim token to attempt to satisfy policy conditions (see
 Section 3.3.1).

 Claim tokens of any format typically contain audience restrictions,
 and an authorization server would not typically be in the primary
 audience for a claim token held or generated by a client. It is
 RECOMMENDED to document how the client, authorization server,
 requesting party, and any additional ecosystem entities and parties
 will establish a trust relationship and communicate any required
 keying material in a claim token profile, as described in Section 4.
 Authorization servers are RECOMMENDED not to accept claim tokens
 pushed by untrusted clients and not to ignore audience restrictions
 found in claim tokens pushed by clients.

 A malicious client could push a claim token to the authorization
 server (revealing the claims therein; see Section 6.2) to seek
 resource access on its own behalf prior to any opportunity for an
 end-user requesting party to authorize claims collection. It is
 RECOMMENDED either for trust relationships established by the
 ecosystem parties to include prior requesting party authorization as
 required, or for end-user requesting party authorization to be
 gathered interactively prior to claims pushing, as described in
 Section 3.3.2.

 Some deployments could have exceptional circumstances allowing the
 authorization server to validate claim tokens. For example, if the
 authorization server itself is also the identity provider for the
 requesting party, then it would be able to validate any ID token that
 the client pushes as a claim token and also validate the client to
 which it was issued.

5.8. Profiles and Trust Establishment

 Parties that are operating and using UMA software entities may need
 to establish agreements about the parties’ rights and
 responsibilities on a legal or contractual level, along with common
 interpretations of UMA constructs for consistent and expected
 software behavior. These agreements can be used to improve the
 parties’ respective security postures. Written profiles are a key
 mechanism for conveying and enforcing these agreements. Section 4
 discusses profiling. See [UMA-legal] to learn about frameworks and

Maler, et al. Expires August 17, 2019 [Page 29]

Internet-Draft February 2019

 tools to assist in the legal and contractual elements of deploying
 UMA-enabled services.

6. Privacy Considerations

 UMA has the following privacy considerations.

6.1. Policy Condition Setting, Time-to-Live Management, and Removal of
 Authorization Grants

 The setting of policy conditions, the resource owner-authorization
 server interface, and the resource owner-resource server interface
 are outside the scope of this specification. (For an example of how
 a secure and authorized resource owner context can be established
 between the resource server and authorization server, see
 [UMAFedAuthz].)

 A variety of flows and user interfaces for policy condition setting
 involving user agents for both of these servers are possible, each
 with different privacy consequences for end-user resource owners. As
 well, various authorization, security, and time-to-live strategies
 could be applied on a per-resource owner basis or a per-authorization
 server basis, as the entities see fit. Validity periods of RPTs,
 refresh tokens, permissions, caching periods for responses, and even
 OAuth client credentials are all subject to management. Different
 time-to-live strategies might be suitable for different resources and
 scopes.

 In order to account for modifications of policy conditions that
 result in the withdrawal of authorization grants (for example, fewer
 scopes, fewer resources, or resources available for a shorter time)
 in as timely a fashion as possible, the authorization server should
 align its strategies for management of these factors with resource
 owner needs and actions rather than those of clients and requesting
 parties. For example, the authorization server may want to
 invalidate a client’s RPT and refresh token as soon as a resource
 owner changes policy conditions in such a way as to deny the client
 and its requesting party future access to a full set of previously
 held permissions.

6.2. Requesting Party Information at the Authorization Server

 Claims are likely to contain personal, personally identifiable, and
 sensitive information, particularly in the case of requesting parties
 who are end-users.

 If the authorization server supports persisting claims for any length
 of time (for example, to support issuance of PCTs), then it SHOULD

Maler, et al. Expires August 17, 2019 [Page 30]

Internet-Draft February 2019

 provide a secure and privacy-protected means of storing claim data.
 It is also RECOMMENDED for the authorization server to use an
 interactive claims-gathering flow to ask an end-user requesting party
 for authorization to collect any claims subsequently and to persist
 their claims (for example, before issuing a PCT), if no prior
 requesting party authorization has been established among the
 ecosystem parties (see Section 5.7).

6.3. Resource Owner Information at the Resource Server

 Since the client’s initial request for a protected resource is made
 in an unauthorized and unauthenticated context, such requests are by
 definition open to all users. The response to that request includes
 the authorization server’s location to enable the client to request
 an access token and present claims. If it is known out of band that
 authorization server is owned and controlled by a single user, or
 visiting the authorization server contains other identifying
 information, then an unauthenticated and unauthorized client would be
 able to tell which resource owner is associated with a given
 resource. Other information about the resource owner, such as
 organizational affiliation or group membership, may be gained from
 this transaction as well.

6.4. Profiles and Trust Establishment

 Parties that are operating and using UMA software entities may need
 to establish agreements about mutual rights, responsibilities, and
 common interpretations of UMA constructs for consistent and expected
 software behavior. These agreements can be used to improve the
 parties’ respective privacy postures. See Section 5.8 for more
 information. Additional considerations related to Privacy by Design
 concepts are discussed in [UMA-PbD].

7. IANA Considerations

 This document makes the following requests of IANA.

7.1. Well-Known URI Registration

 This specification registers the well-known URI defined in Section 2,
 as required by Section 5.1 of [RFC5785].

7.1.1. Registry Contents

 o URI suffix: "uma2-configuration"

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

Maler, et al. Expires August 17, 2019 [Page 31]

Internet-Draft February 2019

 o Specification document: Section 2 in this document

7.2. OAuth 2.0 Authorization Server Metadata Registry

 This specification registers OAuth 2.0 authorization server metadata
 defined in Section 2, as required by Section 7.1 of [OAuthMeta].

7.2.1. Registry Contents

 o Metadata name: "claims_interaction_endpoint"

 o Metadata description: endpoint metadata

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 2 in this document

 o Metadata name: "uma_profiles_supported"

 o Metadata description: profile/extension feature metadata

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 2 in this document

7.3. OAuth 2.0 Dynamic Client Registration Metadata Registry

 This specification registers OAuth 2.0 dynamic client registration
 metadata defined in Section 2, as required by Section 4.1 of
 [RFC7591].

7.3.1. Registry Contents

 o Metadata name: "claims_redirect_uris"

 o Metadata description: claims redirection endpoints

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 2 in this document

Maler, et al. Expires August 17, 2019 [Page 32]

Internet-Draft February 2019

7.4. OAuth 2.0 Extension Grant Parameters Registration

 This specification registers the parameters defined in Section 3.3.1,
 as required by Section 11.2 of [RFC6749].

7.4.1. Registry Contents

 o Parameter name: "claim_token"

 o Parameter usage location: client request, token endpoint

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.1 in this document

 o Parameter name: "pct"

 o Parameter usage location: client request, token endpoint

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.1 in this document

 o Parameter name: "pct"

 o Parameter usage location: authorization server response, token
 endpoint

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.5 in this document

 o Parameter name: "rpt"

 o Parameter usage location: client request, token endpoint

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.1 in this document

 o Parameter name: "ticket"

 o Parameter usage location: client request, token endpoint

Maler, et al. Expires August 17, 2019 [Page 33]

Internet-Draft February 2019

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.1 in this document

 o Parameter name: "upgraded"

 o Parameter usage location: authorization server response, token
 endpoint

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.5 in this document

7.5. OAuth 2.0 Extensions Error Registration

 This specification registers the errors defined in Section 3.3.6, as
 required by Section 11.4 of [RFC6749].

7.5.1. Registry Contents

 o Error name: "need_info" (and its subsidiary parameters)

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.6 in this document

 o Error usage location: authorization server response, token
 endpoint

 o Error name: "request_denied"

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.6 in this document

 o Error usage location: authorization server response, token
 endpoint

 o Error name: "request_submitted" (and its subsidiary parameters)

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.3.6 in this document

Maler, et al. Expires August 17, 2019 [Page 34]

Internet-Draft February 2019

 o Error usage location: authorization server response, token
 endpoint

7.6. OAuth Token Type Hints Registration

 This specification registers the errors defined in Section 3.7, as
 required by Section 4.1.2 of [RFC7009].

7.6.1. Registry Contents

 o Hint value: "pct"

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 3.7 in this document

8. Acknowledgments

 The following people made significant text contributions to the
 specification:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Domenico Catalano, Oracle (former author)

 o Mark Dobrinic, Cozmanova

 o George Fletcher, AOL

 o Thomas Hardjono, MIT (former editor)

 o Andrew Hindle, Hindle Consulting Limited

 o Lukasz Moren, Cloud Identity Ltd

 o James Phillpotts, ForgeRock

 o Christian Scholz, COMlounge GmbH (former editor)

 o Mike Schwartz, Gluu

 o Cigdem Sengul, Nominet UK

 o Jacek Szpot, Newcastle University

Maler, et al. Expires August 17, 2019 [Page 35]

Internet-Draft February 2019

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

9. References

9.1. Normative References

 [BCP195] Sheffer, Y., "Recommendations for Secure Use of Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS)", May 2015, <https://tools.ietf.org/html/bcp195>.

 [OAuthMeta]
 Jones, M., "OAuth 2.0 Authorization Server Metadata",
 November 2017, <https://tools.ietf.org/html/
 draft-ietf-oauth-discovery-08>.

 [OIDCCore]
 Sakimura, N., "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [OIDCDynClientReg]
 Sakimura, N., "OpenID Connect Dynamic Client Registration
 1.0 incorporating errata set 1", November 2014,
 <http://openid.net/specs/
 openid-connect-registration-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

Maler, et al. Expires August 17, 2019 [Page 36]

Internet-Draft February 2019

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [UMAFedAuthz]
 Maler, E., "Federated Authorization for User-Managed
 Access (UMA) 2.0", January 2019,
 <https://docs.kantarainitiative.org/uma/
 rec-oauth-uma-federated-authz-2.0.html>.

9.2. Informative References

 [UMA-legal]
 Maler, E., "UMA Legal", 2017,
 <http://kantarainitiative.org/confluence/display/uma/
 UMA+Legal>.

 [UMA-PbD] Maler, E., "Privacy by Design Implications of UMA", 2018,
 <https://kantarainitiative.org/confluence/display/uma/
 Privacy+by+Design+Implications+of+UMA>.

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", 2017,
 <https://kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Maler, et al. Expires August 17, 2019 [Page 37]

Internet-Draft February 2019

Authors’ Addresses

 Eve Maler (editor)
 ForgeRock

 Email: eve.maler@forgerock.com

 Maciej Machulak
 HSBC

 Email: maciej.p.machulak@hsbc.com

 Justin Richer
 Bespoke Engineering

 Email: justin@bspk.io

 Thomas Hardjono
 MIT

 Email: hardjono@mit.edu

Maler, et al. Expires August 17, 2019 [Page 38]

