
Web Authorization Protocol A. Parecki
Internet-Draft Okta
Intended status: Best Current Practice D. Waite
Expires: 31 August 2024 Ping Identity
 P. De Ryck
 Pragmatic Web Security
 28 February 2024

 OAuth 2.0 for Browser-Based Apps
 draft-ietf-oauth-browser-based-apps-17

Abstract

 This specification details the threats, attack consequences, security
 considerations and best practices that must be taken into account
 when developing browser-based applications that use OAuth 2.0.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Web Authorization
 Protocol Working Group mailing list (oauth@ietf.org), which is
 archived at https://mailarchive.ietf.org/arch/browse/oauth/.

 Source for this draft and an issue tracker can be found at
 https://github.com/oauth-wg/oauth-browser-based-apps.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 31 August 2024.

Parecki, et al. Expires 31 August 2024 [Page 1]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Notational Conventions 4
 3. Terminology . 4
 4. History of OAuth 2.0 in Browser-Based Applications 4
 5. The Threat of Malicious JavaScript 5
 5.1. Malicious JavaScript Payloads 6
 5.1.1. Single-Execution Token Theft 6
 5.1.2. Persistent Token Theft 7
 5.1.3. Acquisition and Extraction of New Tokens 8
 5.1.4. Proxying Requests via the User’s Browser 9
 5.2. Attack Consequences 10
 5.2.1. Exploiting Stolen Refresh Tokens 10
 5.2.2. Exploiting Stolen Access Tokens 10
 5.2.3. Client Hijacking 11
 6. Application Architecture Patterns 11
 6.1. Backend For Frontend (BFF) 12
 6.1.1. Application Architecture 12
 6.1.2. Implementation Details 14
 6.1.3. Security Considerations 16
 6.1.4. Threat Analysis 19
 6.2. Token-Mediating Backend 21
 6.2.1. Application Architecture 21
 6.2.2. Implementation Details 23
 6.2.3. Security Considerations 25
 6.2.4. Threat Analysis 25
 6.3. Browser-based OAuth 2.0 client 28
 6.3.1. Application Architecture 28
 6.3.2. Security Considerations 29
 6.3.3. Threat Analysis 35
 7. Discouraged and Deprecated Architecture Patterns 37
 7.1. Single-Domain Browser-Based Apps (not using OAuth) . . . 38
 7.1.1. Threat Analysis 39

Parecki, et al. Expires 31 August 2024 [Page 2]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 7.2. OAuth Implicit Flow 39
 7.2.1. Historic Note . 39
 7.2.2. Threat Analysis 40
 7.2.3. Further Attacks on the Implicit Flow 40
 7.2.4. Disadvantages of the Implicit Flow 41
 7.3. Resource Owner Password Grant 42
 7.4. Handling the OAuth Flow in a Service Worker 43
 7.4.1. Threat Analysis 43
 8. Token Storage in the Browser 45
 8.1. Cookies . 46
 8.2. Token Storage in a Service Worker 47
 8.3. Token Storage in a Web Worker 47
 8.4. In-Memory Token Storage 48
 8.5. Persistent Token Storage 48
 8.6. Filesystem Considerations for Browser Storage APIs . . . 49
 9. Security Considerations 49
 9.1. Reducing the Authority of Tokens 50
 9.2. Sender-Constrained Tokens 50
 9.3. Authorization Server Mix-Up Mitigation 51
 9.4. Isolating Applications using Origins 51
 10. IANA Considerations . 52
 11. References . 52
 11.1. Normative References 52
 11.2. Informative References 53
 Appendix A. Server Support Checklist 54
 Appendix B. Document History 54
 Appendix C. Acknowledgements 59
 Authors’ Addresses . 60

1. Introduction

 This specification describes different architectural patterns for
 implementing OAuth 2.0 in applications executing in a browser. The
 specification outlines the security challenges for browser-based
 applications and analyzes how different patterns address these
 challenges.

 For native application developers using OAuth 2.0 and OpenID Connect,
 an IETF BCP (best current practice) was published that guides
 integration of these technologies. This document is formally known
 as [RFC8252] or BCP 212, but nicknamed "AppAuth" after the OpenID
 Foundation-sponsored set of libraries that assist developers in
 adopting these practices. [RFC8252] makes specific recommendations
 for how to securely implement OAuth in native applications, including
 incorporating additional OAuth extensions where needed.

Parecki, et al. Expires 31 August 2024 [Page 3]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 OAuth 2.0 for Browser-Based Apps addresses the similarities between
 implementing OAuth for native apps and browser-based apps, but also
 highlights how the security properties of browser-based applications
 are vastly different than those of native applications. This
 document is primarily focused on OAuth, except where OpenID Connect
 provides additional considerations.

 Many of these recommendations are derived from the OAuth 2.0 Security
 Best Current Practice [oauth-security-topics] and browser-based apps
 are expected to follow those recommendations as well. This document
 expands on and further restricts various recommendations given in
 [oauth-security-topics].

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "OAuth": In this document, "OAuth" refers to OAuth 2.0, [RFC6749]
 and [RFC6750].

 "Browser-based application": An application that is dynamically
 downloaded and executed in a web browser, usually written in
 JavaScript. Also sometimes referred to as a "single-page
 application", or "SPA".

 While this document often refers to "JavaScript applications", this
 is not intended to be exclusive to the JavaScript language. The
 recommendations and considerations herein also apply to other
 languages that execute code in the browser, such as Web Assembly
 (https://webassembly.org/).

4. History of OAuth 2.0 in Browser-Based Applications

 At the time that OAuth 2.0 [RFC6749] and [RFC6750] were created,
 browser-based JavaScript applications needed a solution that strictly
 complied with the same-origin policy. Common deployments of OAuth
 2.0 involved an application running on a different domain than the
 authorization server, so it was historically not possible to use the
 Authorization Code flow which would require a cross-origin POST
 request. This was one of the motivations for the definition of the

Parecki, et al. Expires 31 August 2024 [Page 4]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Implicit flow, which returns the access token in the front channel
 via the fragment part of the URL, bypassing the need for a cross-
 origin POST request.

 However, there are several drawbacks to the Implicit flow, generally
 involving vulnerabilities associated with the exposure of the access
 token in the URL. See Section 7.2 for an analysis of these attacks
 and the drawbacks of using the Implicit flow in browsers. Additional
 attacks and security considerations can be found in
 [oauth-security-topics].

 In recent years, widespread adoption of Cross-Origin Resource Sharing
 (CORS), which enables exceptions to the same-origin policy, allows
 browser-based apps to use the OAuth 2.0 Authorization Code flow and
 make a POST request to exchange the authorization code for an access
 token at the token endpoint. In this flow, tokens are no longer
 exposed in the less-secure front channel, which makes the use of
 refresh tokens possible for browser-based applications. Furthermore,
 adding PKCE to the flow prevents authorization code injection, as
 well as ensures that even if an authorization code is intercepted, it
 is unusable by an attacker.

 For this reason, and from other lessons learned, the current best
 practice for browser-based applications is to use the OAuth 2.0
 Authorization Code flow with PKCE. There are various architectural
 patterns for deploying browser-based apps, both with and without a
 corresponding server-side component, each with their own trade-offs
 and considerations, discussed further in this document. Additional
 considerations apply for first-party common-domain apps.

5. The Threat of Malicious JavaScript

 Malicious JavaScript poses a significant risk to browser-based
 applications. Attack vectors, such as cross-site scripting (XSS) or
 the compromise of remote code files, give an attacker the capability
 to run arbitrary code in the application’s execution context. This
 malicious code is not isolated from the main application’s code in
 any way. Consequentially, the malicious code can not only take
 control of the running execution context, but can also perform
 actions within the application’s origin. Concretely, this means that
 the malicious code can steal data from the current page, interact
 with other same-origin browsing contexts, send requests to a backend
 from within the application’s origin, steal data from origin-based
 storage mechanisms (e.g., localStorage, IndexedDB), etc.

 When analyzing the security of browser-based applications in light of
 the presence of malicious JS, it is crucial to realize that the
 *malicious JavaScript code has the same privileges as the legitimate

Parecki, et al. Expires 31 August 2024 [Page 5]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 application code*. When the application code can access variables or
 call functions, the malicious JS code can do exactly the same.
 Furthermore, the malicious JS code can tamper with the regular
 execution flow of the application, as well as with any application-
 level defenses, since they are typically controlled from within the
 application. For example, the attacker can remove or override event
 listeners, modify the behavior of built-in functions (prototype
 pollution), and stop pages in frames from loading.

 This section explores the threats malicious JS code poses to browser-
 based applications that assume the role of an OAuth client. The
 first part discusses a few scenarios that attackers can use once they
 found a way to run malicious JavaScript code. These scenarios paint
 a clear picture of the true power of the attacker, which goes way
 beyond simple token exfiltration. The second part of this section
 analyzes the impact of these attack scenarios on the OAuth client.

 The remainder of this specification will refer back to these attack
 scenarios and consequences to analyze the security properties of the
 different architectural patterns.

5.1. Malicious JavaScript Payloads

 This section presents several malicious scenarios that an attacker
 can execute once they have found a vulnerability that allows the
 execution of malicious JavaScript code. The attack scenarios range
 from extremely trivial (Section 5.1.1) to highly sophisticated
 (Section 5.1.3). Note that this enumeration is non-exhaustive and
 presented in no particular order.

5.1.1. Single-Execution Token Theft

 This scenario covers a simple token exfiltration attack, where the
 attacker obtains and exfiltrates the client’s current tokens. This
 scenario consists of the following steps:

 * Execute malicious JS code

 * Obtain tokens from the application’s preferred storage mechanism
 (See Section 8)

 * Send the tokens to a server controlled by the attacker

 * Store/abuse the stolen tokens

Parecki, et al. Expires 31 August 2024 [Page 6]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 The recommended defensive strategy to protect access tokens is to
 reduce the scope and lifetime of the token. For refresh tokens, the
 use of refresh token rotation offers a detection and correction
 mechanism. Sender-constrained tokens (Section 9.2) offer an
 additional layer of protection against stolen access tokens.

 Note that this attack scenario is trivial and often used to
 illustrate the dangers of malicious JavaScript. Unfortunately, it
 significantly underestimates the capabilities of a sophisticated and
 motivated attacker.

5.1.2. Persistent Token Theft

 This attack scenario is a more advanced variation on the Single-
 Execution Token Theft scenario (Section 5.1.1). Instead of
 immediately stealing tokens upon the execution of the payload, the
 attacker sets up the necessary handlers to steal the application’s
 tokens on a continuous basis. This scenario consists of the
 following steps:

 * Execute malicious JS code

 * Setup a continuous token theft mechanism (e.g., on a 10-second
 time interval) - Obtain tokens from the application’s preferred
 storage mechanism (See Section 8) - Send the tokens to a server
 controlled by the attacker - Store the tokens

 * Wait until the opportune moment to abuse the latest version of the
 stolen tokens

 The crucial difference in this scenario is that the attacker always
 has access to the latest tokens used by the application. This slight
 variation in the payload already suffices to counter typical defenses
 against token theft, such as short lifetimes or refresh token
 rotation.

 For access tokens, the attacker now obtains the latest access token
 for as long as the user’s browser is online. Refresh token rotation
 is not sufficient to prevent abuse of a refresh token. An attacker
 can easily wait until the user closes the application or their
 browser goes offline before using the latest refresh token, thereby
 ensuring that the latest refresh token is not reused.

Parecki, et al. Expires 31 August 2024 [Page 7]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

5.1.3. Acquisition and Extraction of New Tokens

 In this advanced attack scenario, the attacker completely disregards
 any tokens that the application has already obtained. Instead, the
 attacker takes advantage of the ability to run malicious code that is
 associated with the application’s origin. With that ability, the
 attacker can inject a hidden iframe and launch a silent Authorization
 Code flow. This silent flow will reuse the user’s existing session
 with the authorization server and result in the issuing of a new,
 independent set of tokens. This scenario consists of the following
 steps:

 * Execute malicious JS code

 * Setup a handler to obtain the authorization code from the iframe
 (e.g., by monitoring the frame’s URL or via Web Messaging)

 * Insert a hidden iframe into the page and initialize it with an
 authorization request. The authorization request in the iframe
 will occur within the user’s session and, if the session is still
 active, result in the issuing of an authorization code.

 * Extract the authorization code from the iframe using the
 previously installed handler

 * Send the authorization code to a server controlled by the attacker

 * Exchange the authorization code for a new set of tokens

 * Abuse the stolen tokens

 The most important takeaway from this scenario is that it runs a new
 OAuth flow instead of focusing on stealing existing tokens. In
 essence, even if the application finds a token storage mechanism with
 perfect security, the attacker will still be able to request a new
 set of tokens. Note that because the attacker controls the
 application in the browser, the attacker’s Authorization Code flow is
 indistinguishable from a legitimate Authorization Code flow.

 This attack scenario is possible because the security of public
 browser-based OAuth 2.0 clients relies entirely on the redirect URI
 and application’s origin. When the attacker executes malicious
 JavaScript code in the application’s origin, they gain the capability
 to inspect same-origin frames. As a result, the attacker’s code
 running in the main execution context can inspect the redirect URI
 loaded in the same-origin frame to extract the authorization code.

Parecki, et al. Expires 31 August 2024 [Page 8]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 There are no practical security mechanisms for frontend applications
 that counter this attack scenario. Short access token lifetimes and
 refresh token rotation are ineffective, since the attacker has a
 fresh, independent set of tokens. Advanced security mechanism, such
 as DPoP ([DPoP]) are equally ineffective, since the attacker can use
 their own key pair to setup and use DPoP for the newly obtained
 tokens. Requiring user interaction with every Authorization Code
 flow would effectively stop the automatic silent issuance of new
 tokens, but this would significantly impact widely-established
 patterns, such as bootstrapping an application on its first page
 load, or single sign-on across multiple related applications, and is
 not a practical measure.

5.1.4. Proxying Requests via the User’s Browser

 This attack scenario involves the attacker sending requests to the
 resource server directly from within the OAuth client application
 running in the user’s browser. In this scenario, there is no need
 for the attacker to abuse the application to obtain tokens, since the
 browser will include its own cookies or tokens along in the request.
 The requests to the resource server sent by the attacker are
 indistinguishable from requests sent by the legitimate application,
 since the attacker is running code in the same context as the
 legitimate application. This scenario consists of the following
 steps:

 * Execute malicious JS code

 * Send a request to a resource server and process the response

 To authorize the requests to the resource server, the attacker simply
 mimics the behavior of the client application. For example, when a
 client application programmatically attaches an access token to
 outgoing requests, the attacker does the same. Should the client
 application rely on an external component to augment the request with
 the proper access token, then this external component will also
 augment the attacker’s request.

 This attack pattern is well-known and also occurs with traditional
 applications using HttpOnly session cookies. It is commonly accepted
 that this scenario cannot be stopped or prevented by application-
 level security measures. For example, the DPoP specification
 ([DPoP]) explicitly considers this attack scenario to be out of
 scope.

Parecki, et al. Expires 31 August 2024 [Page 9]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

5.2. Attack Consequences

 Successful execution of a malicious payload can result in the theft
 of access tokens and refresh tokens, or in the ability to hijack the
 client application running in the user’s browser. Each of these
 consequences is relevant for browser-based OAuth clients. They are
 discussed below in decreasing order of severity.

5.2.1. Exploiting Stolen Refresh Tokens

 When the attacker obtains a valid refresh token from a browser-based
 OAuth client, they can abuse the refresh token by running a Refresh
 Token flow with the authorization server. The response of the
 Refresh Token flow contains an access token, which gives the attacker
 the ability to access protected resources (See Section 5.2.2). In
 essence, abusing a stolen refresh token enables long-term
 impersonation of the user to resource servers.

 The attack is only stopped when the authorization server refuses a
 refresh token because it has expired or rotated, or when the refresh
 token is revoked. In a typical browser-based OAuth client, it is not
 uncommon for a refresh token to remain valid for multiple hours, or
 even days.

5.2.2. Exploiting Stolen Access Tokens

 If the attacker obtains a valid access token, they gain the ability
 to impersonate the user in a request to a resource server.
 Concretely, possession of an access token allows the attacker to send
 arbitrary requests to any resource server that considers the access
 token to be valid. In essence, abusing a stolen access token enables
 short-term impersonation of the user to resource servers.

 The attack ends when the access token expires or when a token is
 revoked with the authorization server. In a typical browser-based
 OAuth client, access token lifetimes can be quite short, ranging from
 minutes to hours.

 Note that the possession of the access token allows its unrestricted
 use by the attacker. The attacker can send arbitrary requests to
 resource servers, using any HTTP method, destination URL, header
 values, or body.

 The application can use DPoP to ensure its access tokens are bound to
 non-exportable keys held by the browser. In that case, it becomes
 significantly harder for the attacker to abuse stolen access tokens.
 More specifically, with DPoP, the attacker can only abuse stolen
 application tokens by carrying out an online attack, where the proofs

Parecki, et al. Expires 31 August 2024 [Page 10]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 are calculated in the user’s browser. This attack is described in
 detail in section 11.4 of the [DPoP] specification. Additionally,
 when the attacker obtains a fresh set of tokens, as described in
 Section 5.1.3, they can set up DPoP for these tokens using an
 attacker-controlled key pair. In that case, the attacker is again
 free to abuse this newly obtained access token without restrictions.

5.2.3. Client Hijacking

 When stealing tokens is not possible or desirable, the attacker can
 also choose to hijack the OAuth client application running in the
 user’s browser. This effectively allows the attacker to perform any
 operations that the legitimate client application can perform.
 Examples include inspecting data on the page, modifying the page, and
 sending requests to backend systems.

 Note that client hijacking is less powerful than directly abusing
 stolen tokens. In a client hijacking scenario, the attacker cannot
 directly control the tokens and is restricted by the security
 policies enforced on the client application. For example, a resource
 server running on admin.example.org can be configured with a Cross-
 Origin Resource Sharing (CORS) policy that rejects requests coming
 from a client running on web.example.org. Even if the access token
 used by the client would be accepted by the resource server, the CORS
 configuration does not allow such a request.

6. Application Architecture Patterns

 There are three main architectural patterns available when building
 browser-based JavaScript applications that rely on OAuth 2.0 for
 accessing protected resources.

 * A JavaScript application that relies on a backend component for
 handling OAuth responsibilities and proxies all requests through
 the backend component (Backend-For-Frontend or BFF)

 * A JavaScript application that relies on a backend component for
 handling OAuth responsibilities, but calls resource servers
 directly using the access token (Token-Mediating Backend)

 * A JavaScript application acting as the client, handling all OAuth
 responsibilities in the browser (Browser-based OAuth 2.0 Client)

 Each of these architecture patterns offer a different trade-off
 between security and simplicity. The patterns in this section are
 presented in decreasing order of security.

Parecki, et al. Expires 31 August 2024 [Page 11]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.1. Backend For Frontend (BFF)

 This section describes the architecture of a JavaScript application
 that relies on a backend component to handle all OAuth
 responsibilities and API interactions. The BFF has three core
 responsibilities:

 1. The BFF interacts with the authorization server as a confidential
 OAuth client

 2. The BFF manages OAuth access and refresh tokens, making them
 inaccessible by the JavaScript application

 3. The BFF proxies all requests to a resource server, augmenting
 them with the correct access token before forwarding them to the
 resource server

 If an attacker is able to execute malicious code within the
 JavaScript application, the application architecture is able to
 withstand most of the payload scenarios discussed before. Since
 tokens are only available to the BFF, there are no tokens available
 to extract from JavaScript (Payload Section 5.1.1 and Section 5.1.2).
 The BFF is a confidential client, which prevents the attacker from
 running a new flow within the browser (Payload Section 5.1.3). Since
 the malicious JavaScript code still runs within the application’s
 origin, the attacker is able to send requests to the BFF from within
 the user’s browser (Payload Section 5.1.4).

6.1.1. Application Architecture

Parecki, et al. Expires 31 August 2024 [Page 12]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 +-------------+ +--------------+ +--------------+
 | | | | | |
 |Authorization| | Token | | Resource |
 | Endpoint | | Endpoint | | Server |
 | | | | | |
 +-------------+ +--------------+ +--------------+

 ^ ^ ^
 | (F)| (K)|
 | v v

 | +-----------------------------------+
 | | |
 | | Backend for Frontend (BFF) |
 (D)| | |
 | +-----------------------------------+
 |
 | ^ ^ ^ + ^ +
 | (B,I)| (C)| (E)| (G)| (J)| |(L)
 v v v + v + v

+-----------------+ +---+
	(A,H)	
Static Web Host	+----->	Browser
+-----------------+ +---+

 In this architecture, the JavaScript code is first loaded from a
 static web host into the browser (A), and the application then runs
 in the browser. The application checks with the BFF if there is an
 active session (B). If an active session is found, the application
 resumes its authenticated state and skips forward to step J.

 When no active session is found, the JavaScript application calls out
 to the BFF (C) to initiate the Authorization Code flow with the PKCE
 extension (described in Section 6.1.3.1), to which the BFF responds
 by redirecting the browser to the authorization endpoint (D). When
 the user is redirected back, the browser delivers the authorization
 code to the BFF (E), where the BFF can then exchange it for tokens at
 the token endpoint (F) using its client credentials and PKCE code
 verifier.

Parecki, et al. Expires 31 August 2024 [Page 13]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 The BFF associates the obtained tokens with the user’s session (See
 Section 6.1.2.2) and includes the relevant information in a cookie
 that is included in the response to the browser (G). This response
 to the browser will also trigger the reloading of the JavaScript
 application (H). When this application reloads, it will check with
 the BFF for an existing session (I), allowing the JavaScript
 application to resume its authenticated state.

 When the JavaScript application in the browser wants to make a
 request to the resource server, it sends a request to the
 corresponding endpoint on the BFF (J). This request will include the
 cookie set in step G, allowing the BFF to obtain the proper tokens
 for this user’s session. The BFF removes the cookie from the
 request, attaches the user’s access token to the request, and
 forwards it to the actual resource server (K). The BFF then forwards
 the response back to the browser-based application (L).

6.1.2. Implementation Details

6.1.2.1. Refresh Tokens

 It is recommended to use both access tokens and refresh tokens, as it
 enables access tokens to be short-lived and minimally scoped (e.g.,
 using [RFC8707]). When using refresh tokens, the BFF obtains the
 refresh token in step F and associates it with the user’s session.

 If the BFF notices that the user’s access token has expired and the
 BFF has a refresh token, it can run a Refresh Token flow to obtain a
 fresh access token. These steps are not shown in the diagram, but
 would occur between step J and K. Note that this BFF client is a
 confidential client, so it will use its client authentication in the
 Refresh Token request.

 When the refresh token expires, there is no way to recover without
 running an entirely new Authorization Code flow. Therefore, it is
 recommended to configure the lifetime of the cookie-based session
 managed by the BFF to be equal to the maximum lifetime of the refresh
 token. Additionally, when the BFF learns that a refresh token for an
 active session is no longer valid, it is recommended to invalidate
 the session.

6.1.2.2. Cookie-based Session Management

 The BFF relies on traditional browser cookies to keep track of the
 user’s session, which is used to access the user’s tokens. Cookie-
 based sessions, both server-side and client-side, have some
 downsides.

Parecki, et al. Expires 31 August 2024 [Page 14]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Server-side sessions only expose a session identifier and keep all
 data on the server. Doing so ensures a great level of control over
 active sessions, along with the possibility to revoke any session at
 will. The downside of this approach is the impact on scalability,
 requiring solutions such as "sticky sessions", or "session
 replication". Given these downsides, using server-side sessions with
 a BFF is only recommended in small-scale scenarios.

 Client-side sessions push all data to the browser in a signed, and
 optionally encrypted, object. This pattern absolves the server of
 keeping track of any session data, but severely limits control over
 active sessions and makes it difficult to handle session revocation.
 However, when client-side sessions are used in the context of a BFF,
 these properties change significantly. Since the cookie-based
 session is only used to obtain a user’s tokens, all control and
 revocation properties follow from the use of access tokens and
 refresh tokens. It suffices to revoke the user’s access token and/or
 refresh token to prevent ongoing access to protected resources,
 without the need to explicitly invalidate the cookie-based session.

 Best practices to secure the session cookie are discussed in
 Section 6.1.3.2.

6.1.2.3. Combining OAuth and OpenID Connect

 The OAuth flow used by this application architecture can be combined
 with OpenID Connect by including the necessary OpenID Connect scopes
 in the authorization request (C). In that case, the BFF will receive
 an ID Token in step F. The BFF can associate the information from
 the ID Token with the user’s session and provide it to the JavaScript
 application in step B or I.

 When needed, the BFF can use the access token associated with the
 user’s session to make requests to the UserInfo endpoint.

6.1.2.4. Practical Deployment Scenarios

 Serving the static JavaScript code is a separate responsibility from
 handling OAuth tokens and proxying requests. In the diagram
 presented above, the BFF and static web host are shown as two
 separate entities. In real-world deployment scenarios, these
 components can be deployed as a single service (i.e., the BFF serving
 the static JS code), as two separate services (i.e., a CDN and a
 BFF), or as two components in a single service (i.e., static hosting
 and serverless functions on a cloud platform).

Parecki, et al. Expires 31 August 2024 [Page 15]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Note that it is possible to further customize this architecture to
 tailor to specific scenarios. For example, an application relying on
 both internal and external resource servers can choose to host the
 internal resource server alongside the BFF. In that scenario,
 requests to the internal resource server are handled directly at the
 BFF, without the need to proxy requests over the network.
 Authorization from the point of view of the resource server does not
 change, as the user’s session is internally translated to the access
 token and its claims.

6.1.3. Security Considerations

6.1.3.1. The Authorization Code Flow

 The main benefit of using a BFF is the BFF’s ability to act as a
 confidential client. Therefore, the BFF MUST act as a confidential
 client. Furthermore, the BFF SHOULD use the OAuth 2.0 Authorization
 Code grant with PKCE to initiate a request for an access token.
 Detailed recommendations for confidential clients can be found in
 [oauth-security-topics] Section 2.1.1.

6.1.3.2. Cookie Security

 The BFF uses cookies to create a user session, which is directly
 associated with the user’s tokens, either through server-side or
 client-side session state. Given the sensitive nature of these
 cookies, they must be properly protected.

 The following cookie security guidelines are relevant for this
 particular BFF architecture:

 * The BFF MUST enable the _Secure_ flag for its cookies

 * The BFF MUST enable the _HttpOnly_ flag for its cookies

 * The BFF SHOULD enable the _SameSite=Strict_ flag for its cookies

 * The BFF SHOULD set its cookie path to _/_

 * The BFF SHOULD NOT set the _Domain_ attribute for cookies

 * The BFF SHOULD start the name of its cookies with the ___Host-_
 prefix ([CookiePrefixes])

 Additionally, when using client-side sessions that contain access
 tokens, (as opposed to server-side sessions where the tokens only
 live on the server), the BFF SHOULD encrypt its cookie contents using
 an Authenticated Encryption with Authenticated Data ([RFC5116]).

Parecki, et al. Expires 31 August 2024 [Page 16]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 This ensures that tokens stored in cookies are never written to the
 user’s hard drive in plaintext format. This security measure helps
 to ensure protection of the access token against malware that
 actively scans the user’s hard drive to extract sensitive browser
 artifacts, such as cookies and locally stored data (see Section 8).

 For further guidance on cookie security best practices, we refer to
 the OWASP Cheat Sheet series (https://cheatsheetseries.owasp.org
 (https://cheatsheetseries.owasp.org)).

6.1.3.3. Cross-Site Request Forgery Protections

 The interactions between the JavaScript application and the BFF rely
 on cookies for authentication and authorization. Similar to other
 cookie-based interactions, the BFF is required to account for Cross-
 Site Request Forgery (CSRF) attacks.

 The BFF MUST implement a proper CSRF defense. The exact mechanism or
 combination of mechanisms depends on the exact domain where the BFF
 is deployed, as discussed below.

6.1.3.3.1. SameSite Cookie Attribute

 Configuring the cookies with the _SameSite=Strict_ attribute (See
 Section 6.1.3.2) ensures that the BFF’s cookies are only included on
 same-site requests, and not on potentially malicious cross-site
 requests.

 This defense is adequate if the BFF is never considered to be same-
 site with any other applications. However, it falls short when the
 BFF is hosted alongside other applications within the same site,
 defined as the eTLD+1 (See this definition of [Site] for more
 details).

 For example, subdomains, such as https://a.example.com and
 https://b.example.com, are considered same-site, since they share the
 same site example.com. They are considered cross-origin, since
 origins consist of the tuple _<scheme, hostname, port>_. As a result,
 a subdomain takeover attack against b.example.com can enable CSRF
 attacks against the BFF of a.example.com. Technically, this attack
 should be identified as a "Same-Site But Cross-Origin Request
 Forgery" attack.

Parecki, et al. Expires 31 August 2024 [Page 17]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.1.3.3.2. Cross-Origin Resource Sharing (CORS)

 The BFF can rely on CORS as a CSRF defense mechanism. CORS is a
 security mechanism implemented by browsers that restricts cross-
 origin JavaScript-based requests, unless the server explicitly
 approves such a request by setting the proper CORS headers.

 Browsers typically restrict cross-origin HTTP requests initiated from
 scripts. CORS can remove this restriction if the target server
 approves the request, which is checked through an initial "preflight"
 request. Unless the preflight response explicitly approves the
 request, the browser will refuse to send the full request.

 Because of this property, the BFF can rely on CORS as a CSRF defense.
 When the attacker tries to launch a cross-origin request to the BFF
 from the user’s browser, the BFF will not approve the request in the
 preflight response, causing the browser to block the actual request.
 Note that the attacker can always launch the request from their own
 machine, but then the request will not carry the user’s cookies, so
 the attack will fail.

 When relying on CORS as a CSRF defense, it is important to realize
 that certain requests are possible without a preflight. For such
 requests, named "CORS-safelisted Requests", the browser will simply
 send the request and prevent access to the response if the server did
 not send the proper CORS headers. This behavior is enforced for
 requests that can be triggered via other means than JavaScript, such
 as a GET request or a form-based POST request.

 The consequence of this behavior is that certain endpoints of the
 resource server could become vulnerable to CSRF, even with CORS
 enabled as a defense. For example, if the resource server is an API
 that exposes an endpoint to a body-less POST request, there will be
 no preflight request and no CSRF defense.

 To avoid such bypasses against the CORS policy, the BFF SHOULD
 require that every request includes a custom request header. Cross-
 origin requests with a custom request header always require a
 preflight, which makes CORS an effective CSRF defense. Implementing
 this mechanism is as simple as requiring every request to have a
 static request header, such as X-CORS-Security: 1.

 It is also possible to deploy the JavaScript application on the same
 origin as the BFF. This ensures that legitimate interactions between
 the frontend and the BFF do not require any preflights, so there’s no
 additional overhead.

Parecki, et al. Expires 31 August 2024 [Page 18]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.1.3.3.3. Use anti-forgery/double submit cookies

 Some technology stacks and frameworks have built-in CRSF protection
 using anti-forgery cookies. This mechanism relies on a session-
 specific secret that is stored in a cookie, which can only be read by
 the legitimate frontend running in the domain associated with the
 cookie. The frontend is expected to read the cookie and insert its
 value into the request, typically by adding a custom request header.
 The backend verifies the value in the cookie to the value provided by
 the frontend to identify legitimate requests. When implemented
 correctly for all state changing requests, this mechanism effectively
 mitigates CSRF.

 Note that this mechanism is not necessarily recommended over the CORS
 approach. However, if a framework offers built-in support for this
 mechanism, it can serve as a low-effort alternative to protect
 against CSRF.

6.1.3.4. Advanced Security

 In the BFF pattern, all OAuth responsibilities have been moved to the
 BFF, a server-side component acting as a confidential client. Since
 server-side applications are more powerful than browser-based
 applications, it becomes easier to adopt advanced OAuth security
 practices. Examples include key-based client authentication and
 sender-constrained tokens.

6.1.4. Threat Analysis

 This section revisits the payloads and consequences from Section 5,
 and discusses potential additional defenses.

6.1.4.1. Attack Payloads and Consequences

 If the attacker has the ability to execute malicious JavaScript code
 in the application’s execution context, the following payloads become
 relevant attack scenarios:

 * Proxying Requests via the User’s Browser (See Section 5.1.4)

 Note that this attack scenario results in the following consequences:

 * Client Hijacking (See Section 5.2.3)

 Unfortunately, client hijacking is an attack scenario that is
 inherent to the nature of browser-based applications. As a result,
 nothing will be able to prevent such attacks apart from stopping the
 execution of malicious JavaScript code in the first place.

Parecki, et al. Expires 31 August 2024 [Page 19]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Techniques that can help to achieve this are following secure coding
 guidelines, code analysis, and deploying defense-in-depth mechanisms
 such as Content Security Policy ([CSP3]).

 Finally, the BFF is uniquely placed to observe all traffic between
 the JavaScript application and the resource servers. If a high-
 security application would prefer to implement anomaly detection or
 rate limiting, such a BFF would be the ideal place to do so. Such
 restrictions can further help to mitigate the consequences of client
 hijacking.

6.1.4.2. Mitigated Attack Scenarios

 The other payloads, listed below, are effectively mitigated by the
 BFF application architecture:

 * Single-Execution Token Theft (See Section 5.1.1)

 * Persistent Token Theft (See Section 5.1.2)

 * Acquisition and Extraction of New Tokens (See Section 5.1.3)

 The BFF counters the first two payloads by not exposing any tokens to
 the browser-based application. Even when the attacker gains full
 control over the JavaScript application, there are simply no tokens
 to be stolen.

 The third scenario, where the attacker obtains a fresh set of tokens
 by running a silent flow, is mitigated by making the BFF a
 confidential client. Even when the attacker manages to obtain an
 authorization code, they are prevented from exchanging this code due
 to the lack of client credentials. Additionally, the use of PKCE
 prevents other attacks against the authorization code.

 Because of the nature of the BFF, the following two consequences of
 potential attacks become irrelevant:

 * Exploiting Stolen Refresh Tokens (See Section 5.2.1)

 * Exploiting Stolen Access Tokens (See Section 5.2.2)

Parecki, et al. Expires 31 August 2024 [Page 20]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.1.4.3. Summary

 To summarize, the architecture of a BFF is significantly more
 complicated than a browser-only application. It requires deploying
 and operating a server-side BFF component. Additionally, this
 pattern requires all interactions between the JavaScript application
 and the resource servers to be proxied by the BFF. Depending on the
 deployment pattern, this proxy behavior can add a significant burden
 on the server-side components. See Section 6.1.2.4 for additional
 notes if the BFF is acting as the resource server.

 However, because of the nature of the BFF architecture pattern, it
 offers strong security guarantees. Using a BFF also ensures that the
 application’s attack surface does not increase by using OAuth. The
 only viable attack pattern is hijacking the client application in the
 user’s browser, a problem inherent to web applications.

 This architecture is strongly recommended for business applications,
 sensitive applications, and applications that handle personal data.

6.2. Token-Mediating Backend

 This section describes the architecture of a JavaScript application
 that relies on a backend component to handle OAuth responsibilities
 for obtaining tokens, after which the JavaScript application receives
 the access token to directly interact with resource servers.

 The token-mediating backend pattern is more lightweight than the BFF
 pattern (See Section 6.1), since it does not require the proxying of
 all requests to a resource server, which improves latency and
 significantly simplifies deployment. From a security perspective,
 the token-mediating backend is less secure than a BFF, but still
 offers significant advantages over an OAuth client application
 running directly in the browser.

 If an attacker is able to execute malicious code within the
 JavaScript application, the application architecture is able to
 prevent the attacker from abusing refresh tokens or obtaining a fresh
 set of tokens. However, since the access token is directly exposed
 to the JavaScript application, token theft scenarios fall within the
 capabilities of the attacker.

6.2.1. Application Architecture

Parecki, et al. Expires 31 August 2024 [Page 21]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 +-------------+ +--------------+ +--------------+
 | | | | | |
 |Authorization| | Token | | Resource |
 | Endpoint | | Endpoint | | Server |
 | | | | | |
 +-------------+ +--------------+ +--------------+

 ^ ^ ^
 | (F)| |
 | v |
 |
 | +-----------------------+ |
 | | | |
 | |Token-Mediating Backend| | (J)
 (D)| | | |
 | +-----------------------+ |
 | |
 | ^ ^ ^ + |
 | (B,I)| (C)| (E)| (G)| |
 v v v + v v

+-----------------+ +---+
	(A,H)	
Static Web Host	+----->	Browser
+-----------------+ +---+

 In this architecture, the JavaScript code is first loaded from a
 static web host into the browser (A), and the application then runs
 in the browser. The application checks with the token-mediating
 backend if there is an active session (B). If an active session is
 found, the application receives the corresponding access token,
 resumes its authenticated state, and skips forward to step J.

 When no active session is found, the JavaScript application calls out
 to the token-mediating backend (C) to initiate the Authorization Code
 flow with the PKCE extension (described in Section 6.2.3.1), to which
 the token-mediating backend responds by redirecting the browser to
 the authorization endpoint (D). When the user is redirected back,
 the browser delivers the authorization code to the token-mediating
 backend (E), where the token-mediating backend can then exchange it
 for tokens at the token endpoint (F) using its client credentials and
 PKCE code verifier.

 The token-mediating backend associates the obtained tokens with the
 user’s session (See Section 6.2.2.3) and includes the relevant
 information in a cookie that is included in the response to the
 browser (G). This response to the browser will also trigger the

Parecki, et al. Expires 31 August 2024 [Page 22]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 reloading of the JavaScript application (H). When this application
 reloads, it will check with the token-mediating backend for an
 existing session (I), allowing the JavaScript application to resume
 its authenticated state and obtain the access token from the token-
 mediating backend.

 The JavaScript application in the browser can use the access token
 obtained in step I to directly make requests to the resource server
 (J).

 Editor’s Note: A method of implementing this architecture is
 described by the [tmi-bff] draft, although it is currently an expired
 individual draft and has not been proposed for adoption to the OAuth
 Working Group.

6.2.2. Implementation Details

6.2.2.1. Refresh Tokens

 It is recommended to use both access tokens and refresh tokens, as it
 enables access tokens to be short-lived and minimally scoped (e.g.,
 using [RFC8707]). When using refresh tokens, the token-mediating
 backend obtains the refresh token in step F and associates it with
 the user’s session.

 If the resource server rejects the access token, the JavaScript
 application can contact the token-mediating backend to request a
 fresh access token. The token-mediating backend relies on the
 cookies associated with this request to use the user’s refresh token
 to run a Refresh Token flow. These steps are not shown in the
 diagram. Note that this Refresh Token flow involves a confidential
 client, thus requires client authentication.

 When the refresh token expires, there is no way to recover without
 running an entirely new Authorization Code flow. Therefore, it is
 recommended to configure the lifetime of the cookie-based session to
 be equal to the maximum lifetime of the refresh token if such
 information is known upfront. Additionally, when the token-mediating
 backend learns that a refresh token for an active session is no
 longer valid, it is recommended to invalidate the session.

6.2.2.2. Access Token Scopes

 Depending on the resource servers being accessed and the
 configuration of scopes at the authorization server, the JavaScript
 application may wish to request access tokens with different scope
 configurations. This behavior would allow the JavaScript application
 to follow the best practice of using minimally-scoped access tokens.

Parecki, et al. Expires 31 August 2024 [Page 23]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 The JavaScript application can inform the token-mediating backend of
 the desired scopes when it checks for the active session (Step A/I).
 It is up to the token-mediating backend to decide if previously
 obtained access tokens fall within the desired scope criteria.

 It should be noted that this access token caching mechanism at the
 token-mediating backend can cause scope elevation risks when applied
 indiscriminately. If the cached access token features a superset of
 the scopes requested by the frontend, the token-mediating backend
 SHOULD NOT return it to the frontend; instead it SHOULD use the
 refresh token to request an access token with the smaller set of
 scopes from the authorization server. Note that support of such an
 access token downscoping mechanism is at the discretion of the
 authorization server.

 The token-mediating backend can use a similar mechanism to
 downscoping when relying on [RFC8707] to obtain access token for a
 specific resource server.

6.2.2.3. Cookie-based Session Management

 Similar to the BFF, the token-mediating backend relies on traditional
 browser cookies to keep track of the user’s session. The same
 implementation guidelines and security considerations as for a BFF
 apply, as discussed in Section 6.1.2.2.

6.2.2.4. Combining OAuth and OpenID Connect

 Similar to a BFF, the token-mediating backend can choose to combine
 OAuth and OpenID Connect in a single flow. See Section 6.1.2.3 for
 more details.

6.2.2.5. Practical Deployment Scenarios

 Serving the static JavaScript code is a separate responsibility from
 handling interactions with the authorization server. In the diagram
 presented above, the token-mediating backend and static web host are
 shown as two separate entities. In real-world deployment scenarios,
 these components can be deployed as a single service (i.e., the
 token-mediating backend serving the static JS code), as two separate
 services (i.e., a CDN and a token-mediating backend), or as two
 components in a single service (i.e., static hosting and serverless
 functions on a cloud platform). These deployment differences do not
 affect the relationships described in this pattern.

Parecki, et al. Expires 31 August 2024 [Page 24]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.2.3. Security Considerations

6.2.3.1. The Authorization Code Grant

 The main benefit of using a token-mediating backend is the backend’s
 ability to act as a confidential client. Therefore, the token-
 mediating backend MUST act as a confidential client. Furthermore,
 the token-mediating backend SHOULD use the OAuth 2.0 Authorization
 Code grant with PKCE to initiate a request for an access token.
 Detailed recommendations for confidential clients can be found in
 [oauth-security-topics] Section 2.1.1.

6.2.3.2. Cookie Security

 The token-mediating backend uses cookies to create a user session,
 which is directly associated with the user’s tokens, either through
 server-side or client-side session state. The same cookie security
 guidelines as for a BFF apply, as discussed in Section 6.1.3.2.

6.2.3.3. Cross-Site Request Forgery Protections

 The interactions between the JavaScript application and the token-
 mediating backend rely on cookies for authentication and
 authorization. Just like a BFF, the token-mediating backend is
 required to account for Cross-Site Request Forgery (CSRF) attacks.

 Section 6.1.3.3 outlines the nuances of various mitigation strategies
 against CSRF attacks. Specifically for a token-mediating backend,
 these CSRF defenses only apply to the endpoint or endpoints where the
 JavaScript application can obtain its access tokens.

6.2.3.4. Advanced OAuth Security

 The token-mediating backend is a confidential client running as a
 server-side component. The token-mediating backend can adopt
 security best practices for confidential clients, such as key-based
 client authentication.

6.2.4. Threat Analysis

 This section revisits the payloads and consequences from Section 5,
 and discusses potential additional defenses.

6.2.4.1. Attack Payloads and Consequences

 If the attacker has the ability to execute malicious JavaScript code
 in the application’s execution context, the following payloads become
 relevant attack scenarios:

Parecki, et al. Expires 31 August 2024 [Page 25]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Single-Execution Token Theft (See Section 5.1.1) for access tokens

 * Persistent Token Theft (See Section 5.1.2) for access tokens

 * Proxying Requests via the User’s Browser (See Section 5.1.4)

 Note that this attack scenario results in the following consequences:

 * Exploiting Stolen Access Tokens (See Section 5.2.2)

 * Client Hijacking (See Section 5.2.3)

 Exposing the access token to the JavaScript application is the core
 idea behind the architecture pattern of the token-mediating backend.
 As a result, the access token becomes vulnerable to token theft by
 malicious JavaScript.

6.2.4.2. Mitigated Attack Scenarios

 The other payloads, listed below, are effectively mitigated by the
 token-mediating backend:

 * Single-Execution Token Theft (See Section 5.1.1) for refresh
 tokens

 * Persistent Token Theft (See Section 5.1.2) for refresh tokens

 * Acquisition and Extraction of New Tokens (See Section 5.1.3)

 The token-mediating backend counters the first two payloads by not
 exposing the refresh token to the browser-based application. Even
 when the attacker gains full control over the JavaScript application,
 there are simply no refresh tokens to be stolen.

 The third scenario, where the attacker obtains a fresh set of tokens
 by running a silent flow, is mitigated by making the token-mediating
 backend a confidential client. Even when the attacker manages to
 obtain an authorization code, they are prevented from exchanging this
 code due to the lack of client credentials. Additionally, the use of
 PKCE prevents other attacks against the authorization code.

 Because of the nature of the token-mediating backend, the following
 consequences of potential attacks become irrelevant:

 * Exploiting Stolen Refresh Tokens (See Section 5.2.1)

Parecki, et al. Expires 31 August 2024 [Page 26]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.2.4.3. Additional Defenses

 While this architecture inherently exposes access tokens, there are
 some additional defenses that can help to increase the security
 posture of the application.

6.2.4.3.1. Secure Token Storage

 Given the nature of the token-mediating backend pattern, there is no
 need for persistent token storage in the browser. When needed, the
 application can always use its cookie-based session to obtain an
 access token from the token-mediating backend. Section 8 provides
 more details on the security properties of various storage mechanisms
 in the browser.

 Note that even when the access token is stored out of reach of
 malicious JavaScript code, the attacker still has the ability to
 request the access token from the token-mediating backend.

6.2.4.3.2. Using Sender-Constrained Tokens

 Using sender-constrained access tokens is not trivial in this
 architecture. The token-mediating backend is responsible for
 exchanging an authorization code or refresh token for an access
 token, but the JavaScript application will use the access token.
 Using a mechanism such as [DPoP] would require proof generation for a
 request to the authorization server in the JavaScript application,
 but use of that proof by the token-mediating backend.

6.2.4.4. Summary

 To summarize, the architecture of a token-mediating backend is more
 complicated than a browser-only application, but less complicated
 than running a proxying BFF. Similar to complexity, the security
 properties offered by the token-mediating backend lie somewhere
 between using a BFF and running a browser-only application.

 A token-mediating backend addresses typical scenarios that grant the
 attacker long-term access on behalf of the user. However, due to the
 consequence of access token theft, the attacker still has the ability
 to gain direct access to resource servers.

 When considering a token-mediating backend architecture, it is
 strongly recommended to go the extra mile and adopt a full BFF as
 discussed in Section 6.1. Only when the use cases or system
 requirements would prevent the use of a proxying BFF should the
 token-mediating backend be considered as viable alternative.

Parecki, et al. Expires 31 August 2024 [Page 27]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.3. Browser-based OAuth 2.0 client

 This section describes the architecture of a JavaScript application
 that acts as the OAuth 2.0 client, handling all OAuth
 responsibilities in the browser. As a result, the browser-based
 application obtains tokens from the authorization server, without the
 involvement of a backend component.

 If an attacker is able to execute malicious JavaScript code, this
 application architecture is vulnerable to all payload scenarios
 discussed earlier (Section 5.1). In essence, the attacker will be
 able to obtain access tokens and refresh tokens from the
 authorization server, potentially giving them long-term access to
 protected resources on behalf of the user.

6.3.1. Application Architecture

 +---------------+ +--------------+
 | | | |
 | Authorization | | Resource |
 | Server | | Server |
 | | | |
 +---------------+ +--------------+

 ^ ^ ^ +
 | | | |
 |(B) |(C) |(D) |(E)
 | | | |
 | | | |
 + v + v

 +-----------------+ +-------------------------------+
	(A)	
Static Web Host	+----->	Browser
 +-----------------+ +-------------------------------+

 In this architecture, the JavaScript code is first loaded from a
 static web host into the browser (A), and the application then runs
 in the browser. This application is considered a public client,
 since there is no way to provision it with client credentials in this
 model.

 The application obtains an authorization code (B) by initiating the
 Authorization Code flow with the PKCE extension (described in
 Section 6.3.2.1). The application exchanges the authorization code
 for tokens via a JavaScript-based POST request to the token endpoint
 (C).

Parecki, et al. Expires 31 August 2024 [Page 28]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 The application is then responsible for storing the access token and
 optional refresh token as securely as possible using appropriate
 browser APIs, described in Section 8.

 When the JavaScript application in the browser wants to make a
 request to the resource server, it can interact with the resource
 server directly. The application includes the access token in the
 request (D) and receives the resource server’s response (E).

6.3.2. Security Considerations

6.3.2.1. The Authorization Code Grant

 Browser-based applications that are public clients and use the
 Authorization Code grant type described in Section 4.1 of OAuth 2.0
 [RFC6749] MUST also follow these additional requirements described in
 this section.

 In summary, browser-based applications using the Authorization Code
 flow:

 * MUST use PKCE ([RFC7636]) when obtaining an access token
 (Section 6.3.2.1.1)

 * MUST Protect themselves against CSRF attacks (Section 6.3.2.6) by
 either:

 - ensuring the authorization server supports PKCE, or

 - by using the OAuth 2.0 state parameter or the OpenID Connect
 nonce parameter to carry one-time use CSRF tokens

 * MUST Register one or more redirect URIs, and use only exact
 registered redirect URIs in authorization requests
 (Section 6.3.2.4.1)

 In summary, OAuth 2.0 authorization servers supporting browser-based
 applications using the Authorization Code flow:

 * MUST require exact matching of registered redirect URIs
 (Section 6.3.2.4.1)

 * MUST support the PKCE extension (Section 6.3.2.1.1)

 * MUST NOT issue access tokens in the authorization response
 (Section 7.2)

Parecki, et al. Expires 31 August 2024 [Page 29]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * If issuing refresh tokens to browser-based applications
 (Section 6.3.2.7), then:

 - MUST rotate refresh tokens on each use or use sender-
 constrained refresh tokens, and

 - MUST set a maximum lifetime on refresh tokens or expire if they
 are not used in some amount of time

 - when issuing a rotated refresh token, MUST NOT extend the
 lifetime of the new refresh token beyond the lifetime of the
 original refresh token if the refresh token has a
 preestablished expiration time

6.3.2.1.1. Initiating the Authorization Request from a Browser-Based
 Application

 Browser-based applications that are public clients MUST implement the
 Proof Key for Code Exchange (PKCE [RFC7636]) extension when obtaining
 an access token, and authorization servers MUST support and enforce
 PKCE for such clients.

 The PKCE extension prevents an attack where the authorization code is
 intercepted and exchanged for an access token by a malicious client,
 by providing the authorization server with a way to verify the client
 instance that exchanges the authorization code is the same one that
 initiated the flow.

6.3.2.2. Registration of Browser-Based Apps

 Browser-only OAuth clients are considered public clients as defined
 by Section 2.1 of OAuth 2.0 [RFC6749], and MUST be registered with
 the authorization server as such. Authorization servers MUST record
 the client type in the client registration details in order to
 identify and process requests accordingly.

 Authorization servers MUST require that browser-based applications
 register one or more redirect URIs (See Section 6.3.2.4.1).

 Note that both the BFF and token-mediating backend are confidential
 clients.

6.3.2.3. Client Authentication

 Since a browser-based application’s source code is delivered to the
 end-user’s browser, it cannot contain provisioned secrets. As such,
 a browser-based app with native OAuth support is considered a public
 client as defined by Section 2.1 of OAuth 2.0 [RFC6749].

Parecki, et al. Expires 31 August 2024 [Page 30]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
 RECOMMENDED for authorization servers to require client
 authentication of browser-based applications using a shared secret,
 as this serves no value beyond client identification which is already
 provided by the client_id parameter.

 Authorization servers that still require a statically included shared
 secret for SPA clients MUST treat the client as a public client, and
 not accept the secret as proof of the client’s identity. Without
 additional measures, such clients are subject to client impersonation
 (see Section 6.3.2.4 below).

6.3.2.4. Client Impersonation

 As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
 server SHOULD NOT process authorization requests automatically
 without user consent or interaction, except when the identity of the
 client can be assured.

 If authorization servers restrict redirect URIs to a fixed set of
 absolute HTTPS URIs, preventing the use of wildcard domains, wildcard
 paths, or wildcard query string components, this exact match of
 registered absolute HTTPS URIs MAY be accepted by authorization
 servers as proof of identity of the client for the purpose of
 deciding whether to automatically process an authorization request
 when a previous request for the client_id has already been approved.

6.3.2.4.1. Authorization Code Redirect

 Clients MUST register one or more redirect URIs with the
 authorization server, and use only exact registered redirect URIs in
 the authorization request.

 Authorization servers MUST require an exact match of a registered
 redirect URI as described in [oauth-security-topics] Section 4.1.1.
 This helps to prevent attacks targeting the authorization code.

6.3.2.5. Security of In-Browser Communication Flows

 In browser-based apps, it is common to execute the OAuth flow in a
 secondary window, such as a popup or iframe, instead of redirecting
 the primary window. In these flows, the browser-based app holds
 control of the primary window, for instance, to avoid page refreshes
 or run silent frame-based flows.

Parecki, et al. Expires 31 August 2024 [Page 31]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 If the browser-based app and the authorization server are invoked in
 different frames, they have to use in-browser communication
 techniques like the postMessage API (a.k.a. [WebMessaging]) instead
 of top-level redirections. To guarantee confidentiality and
 authenticity of messages, both the initiator origin and receiver
 origin of a postMessage MUST be verified using the mechanisms
 inherently provided by the postMessage API (Section 9.3.2 in
 [WebMessaging]).

 Section 4.18. of [oauth-security-topics] provides additional details
 about the security of in-browser communication flows and the
 countermeasures that browser-based apps and authorization servers
 MUST apply to defend against these attacks.

6.3.2.6. Cross-Site Request Forgery Protections

 Browser-based applications MUST prevent CSRF attacks against their
 redirect URI. This can be accomplished by any of the below:

 * using PKCE, and confirming that the authorization server supports
 PKCE

 * using and verifying unique value for the OAuth 2.0 state parameter
 to carry a CSRF token

 * if the application is using OpenID Connect, by using and verifying
 the OpenID Connect nonce parameter as described in [OpenID]

 See Section 2.1 of [oauth-security-topics] for additional details.

6.3.2.7. Refresh Tokens

 Refresh tokens provide a way for applications to obtain a new access
 token when the initial access token expires. For browser-based
 clients, the refresh token is typically a bearer token, unless the
 application explicitly uses [DPoP]. As a result, the risk of a
 leaked refresh token is greater than leaked access tokens, since an
 attacker may be able to continue using the stolen refresh token to
 obtain new access tokens potentially without being detectable by the
 authorization server.

 Authorization servers may choose whether or not to issue refresh
 tokens to browser-based applications. However, in light of the
 impact of third-party cookie blocking mechanisms, the use of refresh
 tokens has become significantly more attractive. The
 [oauth-security-topics] describes some additional requirements around
 refresh tokens on top of the recommendations of [RFC6749].
 Applications and authorization servers conforming to this BCP MUST

Parecki, et al. Expires 31 August 2024 [Page 32]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 also follow the recommendations in [oauth-security-topics] around
 refresh tokens if refresh tokens are issued to browser-based
 applications.

 In particular, authorization servers:

 * MUST either rotate refresh tokens on each use OR use sender-
 constrained refresh tokens as described in [oauth-security-topics]
 Section 4.14.2

 * MUST either set a maximum lifetime on refresh tokens OR expire if
 the refresh token has not been used within some amount of time

 * upon issuing a rotated refresh token, MUST NOT extend the lifetime
 of the new refresh token beyond the lifetime of the initial
 refresh token if the refresh token has a preestablished expiration
 time

 For example:

 * A user authorizes an application, issuing an access token that
 lasts 10 minutes, and a refresh token that lasts 8 hours

 * After 10 minutes, the initial access token expires, so the
 application uses the refresh token to get a new access token

 * The authorization server returns a new access token that lasts 10
 minutes, and a new refresh token that lasts 7 hours and 50 minutes

 * This continues until 8 hours pass from the initial authorization

 * At this point, when the application attempts to use the refresh
 token after 8 hours, the request will fail and the application
 will have to re-initialize an Authorization Code flow that relies
 on the user’s authentication or previously established session

 Limiting the overall refresh token lifetime to the lifetime of the
 initial refresh token ensures a stolen refresh token cannot be used
 indefinitely.

 Authorization servers SHOULD link the lifetime of the refresh token
 to the user’s authenticated session with the authorization server.
 Doing so ensures that when a user logs out, previously issued refresh
 tokens to browser-based applications become invalid, mimicking a
 single-logout scenario. Authorization servers MAY set different
 policies around refresh token issuance, lifetime and expiration for
 browser-based applications compared to other public clients.

Parecki, et al. Expires 31 August 2024 [Page 33]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.3.2.8. Cross-Origin Requests

 In this scenario, the application sends JavaScript-based requests to
 the authorization server and the resource server. Given the nature
 of OAuth 2.0, these requests are typically cross-origin, subjecting
 them to browser-enforced restrictions on cross-origin communication.
 The authorization server and the resource server MUST send proper
 CORS headers (defined in [Fetch]) to ensure that the browser allows
 the JavaScript application to make the necessary cross-origin
 requests. Note that in the extraordinary scenario where the browser-
 based OAuth client runs in the same origin as the authorization
 server or resource server, a CORS policy is not needed to enable the
 necessary interaction.

 For the authorization server, a proper CORS configuration is relevant
 for the token endpoint, where the browser-based application exchanges
 the authorization code for tokens. Additionally, if the
 authorization server provides additional endpoints to the
 application, such as discovery metadata URLs, JSON Web Key Sets,
 dynamic client registration, revocation, introspection or user info
 endpoints, these endpoints may also be accessed by the browser-based
 application. Consequentially, the authorization server is
 responsible for enforcing a proper CORS configuration on these
 endpoints.

 This specification does not include guidelines for deciding the
 concrete CORS policy implementation, which can consist of a wildcard
 origin or a more restrictive configuration. Note that CORS has two
 modes of operation with different security properties. The first
 mode applies to CORS-safelisted requests, formerly known as simple
 requests, where the browser sends the request and uses the CORS
 response headers to decide if the response can be exposed to the
 client-side execution context. For non-CORS-safelisted requests,
 such as a request with a custom request header, the browser will
 first check the CORS policy using a preflight. The browser will only
 send the actual request when the server sends their approval in the
 preflight response.

 Note that due to the authorization server’s specific configuration,
 it is possible that the CORS response to a preflight is different
 than the CORS response to the actual request. During the preflight,
 the authorization server can only verify the provided origin, but
 during an actual request, the authorization server has the full
 request data, such as the client ID. Consequentially, the
 authorization server can approve a known origin during the preflight,
 but reject the actual request after comparing the origin to this
 specific client’s list of pre-registered origins.

Parecki, et al. Expires 31 August 2024 [Page 34]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.3.3. Threat Analysis

 This section revisits the payloads and consequences from Section 5,
 and discusses potential additional defenses.

6.3.3.1. Attack Payloads and Consequences

 If the attacker has the ability to execute malicious JavaScript code
 in the application’s execution context, the following payloads become
 relevant attack scenarios:

 * Single-Execution Token Theft (See Section 5.1.1)

 * Persistent Token Theft (See Section 5.1.2)

 * Acquisition and Extraction of New Tokens (See Section 5.1.3)

 * Proxying Requests via the User’s Browser (See Section 5.1.4)

 The most dangerous payload is the acquisition and extraction of new
 tokens. In this attack scenario, the attacker only interacts with
 the authorization server, which makes the actual implementation
 details of the OAuth functionality in the JavaScript client
 irrelevant. Even if the legitimate client application finds a
 perfectly secure token storage mechanism, the attacker will still be
 able to obtain tokens from the authorization server.

 Note that these attack scenarios result in the following
 consequences:

 * Exploiting Stolen Refresh Tokens (See Section 5.2.1)

 * Exploiting Stolen Access Tokens (See Section 5.2.2)

 * Client Hijacking (See Section 5.2.3)

6.3.3.2. Additional Defenses

 While this architecture is inherently vulnerable to malicious
 JavaScript code, there are some additional defenses that can help to
 increase the security posture of the application. Note that none of
 these defenses address or fix the underlying problem that allows the
 attacker to run a new flow to obtain tokens.

Parecki, et al. Expires 31 August 2024 [Page 35]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

6.3.3.2.1. Secure Token Storage

 When handling tokens directly, the application can choose different
 storage mechanisms to handle access tokens and refresh tokens.
 Universally accessible storage areas, such as _Local Storage_, are
 easier to access from malicious JavaScript than highly isolated
 storage areas, such as a _Web Worker_. Section 8 discusses different
 storage mechanisms with their trade-off in more detail.

 A practical implementation pattern can use a Web Worker to isolate
 the refresh token, and provide the application with the access token
 making requests to resource servers.

 Note that even a perfect token storage mechanism does not prevent the
 attacker from running a new flow to obtain a fresh set of tokens (See
 Section 5.1.3).

6.3.3.2.2. Using Sender-Constrained Tokens

 Browser-based OAuth 2.0 clients can implement [DPoP] to transition
 from bearer access tokens and bearer refresh tokens to sender-
 constrained tokens. In such an implementation, the private key used
 to sign DPoP proofs is handled by the browser (a non-extractable
 CryptoKeyPair (https://developer.mozilla.org/en-US/docs/Web/API/
 CryptoKeyPair) is stored using IndexedDB). As a result, the use of
 DPoP effectively prevents scenarios where the attacker exfiltrates
 the application’s tokens (See Section 5.1.1 and Section 5.1.2).

 Note that the use of DPoP does not prevent the attacker from running
 a new flow to obtain a fresh set of tokens (See Section 5.1.3). Even
 when DPoP is mandatory, the attacker can bind the fresh set of tokens
 to a key pair under their control, allowing them to calculate the
 necessary DPoP proofs to use the tokens.

6.3.3.2.3. Restricting Access to the Authorization Server

 The scenario where the attacker obtains a fresh set of tokens (See
 Section 5.1.3) relies on the ability to directly interact with the
 authorization server from within the browser. In theory, a defense
 that prevents the attacker from silently interacting with the
 authorization server could solve the most dangerous payload.
 However, in practice, such defenses are ineffective or impractical.

 For completeness, this BCP lists a few options below. Note that none
 of these defenses are recommended, as they do not offer practically
 usable security benefits.

Parecki, et al. Expires 31 August 2024 [Page 36]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 The authorization server could block authorization requests that
 originate from within an iframe. While this would prevent the exact
 scenario from Section 5.1.3, it would not work for slight variations
 of the attack scenario. For example, the attacker can launch the
 silent flow in a popup window, or a pop-under window. Additionally,
 browser-only OAuth 2.0 clients typically rely on a hidden iframe-
 based flow to bootstrap the user’s authentication state, so this
 approach would significantly impact the user experience.

 The authorization server could opt to make user consent mandatory in
 every Authorization Code flow (as described in Section 10.2 OAuth 2.0
 [RFC6749]), thus requiring user interaction before issuing an
 authorization code. This approach would make it harder for an
 attacker to run a silent flow to obtain a fresh set of tokens.
 However, it also significantly impacts the user experience by
 continuously requiring consent. As a result, this approach would
 result in "consent fatigue", which makes it likely that the user will
 blindly approve the consent, even when it is associated with a flow
 that was initialized by the attacker.

6.3.3.3. Summary

 To summarize, the architecture of a browser-based OAuth 2.0 client
 application is straightforward, but results in a significant increase
 in the attack surface of the application. The attacker is not only
 able to hijack the client, but also to extract a full-featured set of
 tokens from the browser-based application.

 This architecture is not recommended for business applications,
 sensitive applications, and applications that handle personal data.

7. Discouraged and Deprecated Architecture Patterns

 Client applications and backend applications have evolved
 significantly over the last two decades, along with threats, attacker
 models, and our understanding of modern application security. As a
 result, previous recommendations are often no longer recommended and
 proposed solutions often fall short of meeting the expected security
 requirements.

 This section discusses a few alternative architecture patterns, which
 are not recommended for use in modern browser-based OAuth
 applications. This section discusses each of the patterns, along
 with a threat analysis that investigates the attack payloads and
 consequences when relevant.

Parecki, et al. Expires 31 August 2024 [Page 37]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

7.1. Single-Domain Browser-Based Apps (not using OAuth)

 Too often, simple applications are made needlessly complex by using
 OAuth to replace the concept of session management. A typical
 example is the modern incarnation of a server-side MVC application,
 which now consists of a browser-based frontend backed by a server-
 side API.

 In such an application, the use of OpenID connect to offload user
 authentication to a dedicated provider can significantly simplify the
 application’s architecture and development. However, the use of
 OAuth for governing access between the frontend and the backend is
 often not needed. Instead of using access tokens, the application
 can rely on traditional cookie-based session management to keep track
 of the user’s authentication status. The security guidelines to
 protect the session cookie are discussed in Section 6.1.3.2.

 While the advice to not use OAuth seems out-of-place in this
 document, it is important to note that OAuth was originally created
 for third-party or federated access to APIs, so it may not be the
 best solution in a single common-domain deployment. That said, there
 are still some advantages in using OAuth even in a common-domain
 architecture:

 * Allows more flexibility in the future, such as if you were to
 later add a new domain to the system. With OAuth already in
 place, adding a new domain wouldn’t require any additional
 rearchitecting.

 * Being able to take advantage of existing library support rather
 than writing bespoke code for the integration.

 * Centralizing login and multi-factor authentication support,
 account management, and recovery at the OAuth server, rather than
 making it part of the application logic.

 * Splitting of responsibilities between authenticating a user and
 serving resources

 Using OAuth for browser-based apps in a first-party same-domain
 scenario provides these advantages, and can be accomplished by any of
 the architectural patterns described above.

Parecki, et al. Expires 31 August 2024 [Page 38]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

7.1.1. Threat Analysis

 Due to the lack of using OAuth, this architecture pattern is only
 vulnerable to the following attack payload: Proxying Requests via the
 User’s Browser Section 5.1.4. As a result, this pattern can lead to
 the following consequence: Client Hijacking Section 5.2.3

7.2. OAuth Implicit Flow

 The OAuth 2.0 Implicit flow (defined in Section 4.2 of OAuth 2.0
 [RFC6749]) works by the authorization server issuing an access token
 in the authorization response (front channel) without an
 authorization code exchange step. In this case, the access token is
 returned in the fragment part of the redirect URI, providing an
 attacker with several opportunities to intercept and steal the access
 token.

 Authorization servers MUST NOT issue access tokens in the
 authorization response, and MUST issue access tokens only from the
 token endpoint. Browser-based clients MUST use the Authorization
 Code flow and MUST NOT use the Implicit flow to obtain access tokens.

7.2.1. Historic Note

 Historically, the Implicit flow provided an advantage to browser-
 based apps since JavaScript could always arbitrarily read and
 manipulate the fragment portion of the URL without triggering a page
 reload. This was necessary in order to remove the access token from
 the URL after it was obtained by the app. Additionally, until Cross
 Origin Resource Sharing (CORS) was widespread in browsers, the
 Implicit flow offered an alternative flow that didn’t require CORS
 support in the browser or on the server.

 Modern browsers now have the Session History API (described in
 "Session history and navigation" of [HTML]), which provides a
 mechanism to modify the path and query string component of the URL
 without triggering a page reload. Additionally, CORS has widespread
 support and is often used by single-page apps for many purposes.
 This means modern browser-based apps can use the OAuth 2.0
 Authorization Code flow with PKCE, since they have the ability to
 remove the authorization code from the query string without
 triggering a page reload thanks to the Session History API, and CORS
 support at the token endpoint means the app can obtain tokens even if
 the authorization server is on a different domain.

Parecki, et al. Expires 31 August 2024 [Page 39]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

7.2.2. Threat Analysis

 The architecture pattern discussed in this section is vulnerable to
 the following attack payloads:

 * Single-Execution Token Theft Section 5.1.1

 * Persistent Token Theft Section 5.1.2

 * Acquisition and Extraction of New Tokens Section 5.1.3

 * Proxying Requests via the User’s Browser Section 5.1.4

 As a result, this pattern can lead to the following consequences:

 * Exploiting Stolen Refresh Tokens Section 5.2.1

 * Exploiting Stolen Access Tokens Section 5.2.2

 * Client Hijacking Section 5.2.3

7.2.3. Further Attacks on the Implicit Flow

 Apart from the attack payloads and consequences that were already
 discussed, there are a few additional attacks that further support
 the deprecation of the Implicit flow. Many attacks on the Implicit
 flow described by [RFC6819] and Section 4.1.2 of
 [oauth-security-topics] do not have sufficient mitigation strategies.
 The following sections describe the specific attacks that cannot be
 mitigated while continuing to use the Implicit flow.

7.2.3.1. Threat: Manipulation of the Redirect URI

 If an attacker is able to cause the authorization response to be sent
 to a URI under their control, they will directly get access to the
 authorization response including the access token. Several methods
 of performing this attack are described in detail in
 [oauth-security-topics].

7.2.3.2. Threat: Access Token Leak in Browser History

 An attacker could obtain the access token from the browser’s history.
 The countermeasures recommended by [RFC6819] are limited to using
 short expiration times for tokens, and indicating that browsers
 should not cache the response. Neither of these fully prevent this
 attack, they only reduce the potential damage.

Parecki, et al. Expires 31 August 2024 [Page 40]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Additionally, many browsers now also sync browser history to cloud
 services and to multiple devices, providing an even wider attack
 surface to extract access tokens out of the URL.

 This is discussed in more detail in Section 4.3.2 of
 [oauth-security-topics].

7.2.3.3. Threat: Manipulation of Scripts

 An attacker could modify the page or inject scripts into the browser
 through various means, including when the browser’s HTTPS connection
 is being intercepted by, for example, a corporate network. While
 attacks on the TLS layer are typically out of scope of basic security
 recommendations to prevent, in the case of browser-based apps they
 are much easier to perform. An injected script can enable an
 attacker to have access to everything on the page.

 The risk of a malicious script running on the page may be amplified
 when the application uses a known standard way of obtaining access
 tokens, namely that the attacker can always look at the
 window.location variable to find an access token. This threat
 profile is different from an attacker specifically targeting an
 individual application by knowing where or how an access token
 obtained via the Authorization Code flow may end up being stored.

7.2.3.4. Threat: Access Token Leak to Third-Party Scripts

 It is relatively common to use third-party scripts in browser-based
 apps, such as analytics tools, crash reporting, and even things like
 a Facebook or Twitter "like" button. In these situations, the author
 of the application may not be able to be fully aware of the entirety
 of the code running in the application. When an access token is
 returned in the fragment, it is visible to any third-party scripts on
 the page.

7.2.4. Disadvantages of the Implicit Flow

 There are several additional reasons the Implicit flow is
 disadvantageous compared to using the standard Authorization Code
 flow.

 * OAuth 2.0 provides no mechanism for a client to verify that a
 particular access token was intended for that client, which could
 lead to misuse and possible impersonation attacks if a malicious
 party hands off an access token it retrieved through some other
 means to the client.

Parecki, et al. Expires 31 August 2024 [Page 41]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Returning an access token in the front-channel redirect gives the
 authorization server no assurance that the access token will
 actually end up at the application, since there are many ways this
 redirect may fail or be intercepted.

 * Supporting the Implicit flow requires additional code, more upkeep
 and understanding of the related security considerations.
 Limiting the authorization server to just the Authorization Code
 flow reduces the attack surface of the implementation.

 * If the JavaScript application gets wrapped into a native app, then
 [RFC8252] also requires the use of the Authorization Code flow
 with PKCE anyway.

 In OpenID Connect, the ID Token is sent in a known format (as a JWT),
 and digitally signed. Returning an ID token using the Implicit flow
 (response_type=id_token) requires the client validate the JWT
 signature, as malicious parties could otherwise craft and supply
 fraudulent ID tokens. Performing OpenID Connect using the
 Authorization Code flow provides the benefit of the client not
 needing to verify the JWT signature, as the ID token will have been
 fetched over an HTTPS connection directly from the authorization
 server’s token endpoint. Additionally, in many cases an application
 will request both an ID token and an access token, so it is simpler
 and provides fewer attack vectors to obtain both via the
 Authorization Code flow.

7.3. Resource Owner Password Grant

 The Resource Owner Password Credentials Grant MUST NOT be used, as
 described in [oauth-security-topics] Section 2.4. Instead, by using
 the Authorization Code flow and redirecting the user to the
 authorization server, this provides the authorization server the
 opportunity to prompt the user for secure non-phishable
 authentication options, take advantage of single sign-on sessions, or
 use third-party identity providers. In contrast, the Resource Owner
 Password Credentials Grant does not provide any built-in mechanism
 for these, and would instead need to be extended with custom
 protocols.

 To conform to this best practice, browser-based applications using
 OAuth or OpenID Connect MUST use a redirect-based flow (e.g. the
 OAuth Authorization Code flow) as described in this document.

Parecki, et al. Expires 31 August 2024 [Page 42]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

7.4. Handling the OAuth Flow in a Service Worker

 In an attempt to limit the attacker’s ability to extract existing
 tokens or acquire a new set of tokens, a pattern using a Service
 Worker (https://developer.mozilla.org/en-US/docs/Web/API/
 Service_Worker_API) has been suggested in the past. In this pattern,
 the application’s first action upon loading is registering a Service
 Worker. The Service Worker becomes responsible for executing the
 Authorization Code flow to obtain tokens and to augment outgoing
 requests to the resource server with the proper access token.
 Additionally, the Service Worker blocks the client application’s code
 from making direct calls to the authorization server’s endpoints.
 This restrictions aims to target the attack payload "Acquisition and
 Extraction of New Tokens" (Section 5.1.3).

 The sequence diagram included below illustrates the interactions
 between the client, the Service Worker, the authorization server, and
 the resource server.

 Resource
 Authorization
 User Application Service Worker server
 server
 | browse | | |
 |
 | ------------>| | |
 |
 | |-------------------> |
/authorize |
 | | ---
------------->
 | | | redirect w/ authorization
 code |
 | | < -
 - - - - - - |
 | | | |
 |
 | | | token request w/ auth code |
 /token |
 | | | ---
------------->
 | | | <-
- - - - - - -|
 | | | |
 |
 | | resource request | |
 |
 | |-------------------> resource request with token |
 |
 | | | ---------------------------->|
 |
 | | | |
 |
 User Application Service Worker Resource
 Authorization
 server
 server

 Note that this pattern never exposes the tokens to the application
 running in the browser. Since the Service Worker runs in an isolated
 execution environment, there is no shared memory and no way for the
 client application to influence the execution of the Service Worker.

7.4.1. Threat Analysis

 The architecture pattern discussed in this section is vulnerable to
 the following attack payloads:

Parecki, et al. Expires 31 August 2024 [Page 43]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Acquisition and Extraction of New Tokens Section 5.1.3

 * Proxying Requests via the User’s Browser Section 5.1.4

 As a result, this pattern can lead to the following consequences:

 * Exploiting Stolen Refresh Tokens Section 5.2.1

 * Exploiting Stolen Access Tokens Section 5.2.2

 * Client Hijacking Section 5.2.3

7.4.1.1. Attacking the Service Worker

 The seemingly promising security benefits of using a Service Worker
 warrant a more detailed discussion of its security limitations. To
 fully protect the application against the relevant payloads (See
 Section 5.1), the Service Worker needs to meet two security
 requirements:

 1. Prevent an attacker from exfiltrating tokens

 2. Prevent an attacker from acquiring a new set of tokens

 Once registered, the Service Worker runs an Authorization Code flow
 and obtains the tokens. Since the Service Worker keeps track of
 tokens in its own isolated execution environment, they are out of
 reach for any application code, including potentially malicious code.
 Consequentially, the Service Worker meets the first requirement of
 preventing token exfiltration. This essentially neutralizes the
 first two attack payloads discussed in Section 5.1.

 To meet the second security requirement, the Service Worker must be
 able to guarantee that an attacker controlling the legitimate
 application cannot execute a new Authorization Code flow, an attack
 discussed in Section 5.1.3. Due to the nature of Service Workers,
 the registered Service Worker will be able to block all outgoing
 requests that initialize such a new flow, even when they occur in a
 frame or a new window.

Parecki, et al. Expires 31 August 2024 [Page 44]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 However, the malicious code running inside the application can
 unregister this Service Worker. Unregistering a Service Worker can
 have a significant functional impact on the application, so it is not
 an operation the browser handles lightly. Therefore, an unregistered
 Service Worker is marked as such, but all currently running instances
 remain active until their corresponding browsing context is
 terminated (e.g., by closing the tab or window). So even when an
 attacker unregisters a Service Worker, it remains active and able to
 prevent the attacker from reaching the authorization server.

 One of the consequences of unregistering a Service Worker is that it
 will not be present when a new browsing context is opened. So when
 the attacker first unregisters the Service Worker, and then starts a
 new flow in a frame, there will be no Service Worker associated with
 the browsing context of the frame. Consequentially, the attacker
 will be able to run an Authorization Code flow, extract the code from
 the frame’s URL, and exchange it for tokens.

 In essence, the Service Worker fails to meet the second security
 requirement, leaving it vulnerable to the payload where the attacker
 acquires a new set of tokens (Section 5.1.3).

 Due to these shortcomings, combined with the significant complexity
 of registering and maintaining a Service Worker, this pattern is not
 recommended.

 Finally, note that the use of a Service Worker by itself does not
 increase the attack surface of the application. In practice, Service
 Workers are often used to retrofit a legacy application with support
 for including OAuth access tokens on outgoing requests. Just note
 that the Service Worker in these scenarios does not change the
 security properties of the application. It merely simplifies
 development and maintenance of the application.

8. Token Storage in the Browser

 When using an architectural pattern that involves the browser-based
 code obtaining tokens itself, the application will ultimately need to
 store the tokens it acquires for later use. This applies to both the
 Token-Mediating Backend architecture as well as any architecture
 where the JavaScript code is the OAuth client itself and does not
 have a corresponding backend component. Depending on the
 application’s architecture, the tokens can include an access token
 and refresh token. Given the sensitive nature of refresh tokens, the
 application can decide to use different storage strategies for both
 types.

Parecki, et al. Expires 31 August 2024 [Page 45]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 When discussing the security properties of browser-based token
 storage solutions, it is important to understand the attacker’s
 capabilities when they compromise a browser-based application.
 Similar to previous discussions, there are two main attack payloads
 that should be taken into account:

 1. The attacker obtaining tokens from storage

 2. The attacker obtaining tokens from the provider (e.g., the
 authorization server or the token-mediating backend)

 Since the attacker’s code becomes indistinguishable from the
 legitimate application’s code, the attacker will always be able to
 request tokens from the provider in exactly the same way as the
 legitimate application code. As a result, not even the perfect token
 storage solution can address the dangers of the second threat, where
 the attacker requests tokens from the provider.

 That said, the different security properties of browser-based storage
 solutions will impact the attacker’s ability to obtain existing
 tokens from storage. This section discusses a few different storage
 mechanisms and their properties.

8.1. Cookies

 Browser cookies are both a storage mechanism and a transport
 mechanism. The browser automatically supports both through the
 corresponding request and response headers, resulting in the storage
 of cookies in the browser and the automatic inclusion of cookies on
 outgoing requests given it matches the cookie’s domain, path, or
 other properties.

 Next to header-based control over cookies, browsers also offer a
 JavaScript Cookie API to get and set cookies. This Cookie API is
 often mistaken as an easy way to store data in the browser. In such
 a scenario, the JavaScript code stores a token in a cookie, with the
 intent to retrieve the token for later for inclusion in the
 Authorization header of an API call. However, since the cookie is
 associated with the domain of the browser-based application, the
 browser will also send the cookie containing the token when making a
 request to the server running on this domain. One example of such a
 request is the browser loading the application after a previous visit
 to the application (step A in the diagram of Section 6.3).

 Because of these unintentional side effect of using cookies for
 JavaScript-based storage, this practice is NOT RECOMMENDED.

Parecki, et al. Expires 31 August 2024 [Page 46]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Note that this practice is different from the use of cookies in a BFF
 (discussed in Section 6.1.3.2), where the cookie is inaccessible to
 JavaScript and is supposed to be sent to the backend.

8.2. Token Storage in a Service Worker

 A Service Worker offers a fully isolated environment to keep track of
 tokens. These tokens are inaccessible to the client application,
 effectively protecting them against exfiltration. To guarantee the
 security of these tokens, the Service Worker cannot share these
 tokens with the application. Consequentially, whenever the
 application wants to perform an operation with a token, it has to ask
 the Service Worker to perform this operation and return the result.

 When aiming to isolate tokens from the application’s execution
 context, the Service Worker MUST NOT store tokens in any persistent
 storage API that is shared with the main window. For example,
 currently, the IndexedDB storage is shared between the browsing
 context and Service Worker, so is not a suitable place for the
 Service Worker to persist data that should remain inaccessible to the
 main window. Consequentially, the Service Worker currently does not
 have access to an isolated persistent storage area.

 As discussed before, the use of a Service Worker does not prevent an
 attacker from obtaining a new set of tokens. Similarly, if the
 Service Worker initially obtains the tokens from the legitimate
 application, the attacker can likely obtain them in the same manner.

8.3. Token Storage in a Web Worker

 The application can use a Web Worker, which results in an almost
 identical scenario as the previous one that relies on a Service
 Worker. The difference between a Service Worker and a Web Worker is
 the level of access and its runtime properties. Service Workers can
 intercept and modify outgoing requests, while Web Workers are just a
 way to run background tasks. Web Workers are ephemeral and disappear
 when the browsing context is closed, while Service Workers are
 persistent services registered in the browser.

 The security properties of using a Web Worker are identical to using
 Service Workers. When tokens are exposed to the application, they
 become vulnerable. When tokens need to be used, the operation that
 relies on them has to be carried out by the Web Worker.

 One common use of Web Workers is to isolate the refresh token. In
 such a scenario, the application runs an Authorization Code flow to
 obtain the authorization code. This code is forwarded to a Web
 Worker, which exchanges it for tokens. The Web Worker keeps the

Parecki, et al. Expires 31 August 2024 [Page 47]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 refresh token in memory and sends the access token to the main
 application. The main application uses the access token as desired.
 When the application needs to run a refresh token flow, it asks the
 Web Worker to do so, after which the application obtains a fresh
 access token.

 In this scenario, the application’s existing refresh token is
 effectively protected against exfiltration, but the access token is
 not. Additionally, nothing would prevent an attacker from obtaining
 their own tokens by running a new Authorization Code flow.

8.4. In-Memory Token Storage

 Another option is keeping tokens in-memory, without using any
 persistent storage. Doing so limits the exposure of the tokens to
 the current execution context only, but has the downside of not being
 able to persist tokens between page loads.

 The security of in-memory token storage can be further enhanced by
 using a closure variable to effectively shield the token from direct
 access. By using closures, the token is only accessible to the pre-
 defined functions inside the closure, such as a function to make a
 request to the resource server.

 While closures work well in simple, isolated environments, they are
 tricky to secure in a complex environment like the browser’s
 execution environment. For example, a closure relies on a variety of
 outside functions to execute its operations, such as _toString_
 functions or networking APIs. Using prototype poisoning, an attacker
 can substitute these functions with malicious versions, causing the
 closure’s future operations to use these malicious versions. Inside
 the malicious function, the attacker can gain access to the function
 arguments, which may expose the tokens from within the closure to the
 attacker.

8.5. Persistent Token Storage

 The persistent storage APIs currently available as of this writing
 are localStorage, sessionStorage, and IndexedDB.

 localStorage persists between page reloads as well as is shared
 across all tabs. This storage is accessible to the entire origin,
 and persists longer term. localStorage does not protect against XSS
 attacks, as the attacker would be running code within the same
 origin, and as such, would be able to read the contents of the
 localStorage.

Parecki, et al. Expires 31 August 2024 [Page 48]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 sessionStorage is similar to localStorage, except that the lifetime
 of sessionStorage is linked to the lifetime of a browser tab.
 Additionally, sessionStorage is not shared between multiple tabs open
 to pages on the same origin, which slightly reduces the exposure of
 the tokens in sessionStorage.

 IndexedDB is a persistent storage mechanism like localStorage, but is
 shared between multiple tabs as well as between the browsing context
 and Service Workers.

 Note that the main difference between these patterns is the exposure
 of the data, but that none of these options can fully mitigate token
 exfiltration when the attacker can execute malicious code in the
 application’s execution environment.

8.6. Filesystem Considerations for Browser Storage APIs

 In all cases, as of this writing, browsers ultimately store data in
 plain text on the filesystem. This behavior exposes tokens to
 attackers with the ability to read files on disk. While such attacks
 rely on capabilities that are well beyond the scope of browser-based
 applications, this topic highlights an important attack vector
 against modern applications. More and more malware is specifically
 created to crawl user’s machines looking for browser profiles to
 obtain high-value tokens and sessions, resulting in account takeover
 attacks.

 While the browser-based application is incapable of mitigating such
 attacks, the application can mitigate the consequences of such an
 attack by ensuring data confidentiality using encryption. The
 [WebCryptographyAPI] provides a mechanism for JavaScript code to
 generate a secret key, as well as an option for that key to be non-
 exportable. A JavaScript application could then use this API to
 encrypt and decrypt tokens before storing them. However, the
 [WebCryptographyAPI] specification only ensures that the key is not
 exportable to the browser code, but does not place any requirements
 on the underlying storage of the key itself with the operating
 system. As such, a non-exportable key cannot be relied on as a way
 to protect against exfiltration from the underlying filesystem.

 In order to protect against token exfiltration from the filesystem,
 the encryption keys would need to be stored somewhere other than the
 filesystem, such as on a remote server. This introduces new
 complexity for a purely browser-based app, and is out of scope of
 this document.

9. Security Considerations

Parecki, et al. Expires 31 August 2024 [Page 49]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

9.1. Reducing the Authority of Tokens

 A general security best practice in the OAuth world is to minimize
 the authority associated with access tokens. This best practice is
 applicable to all the architectures discussed in this specification.
 Concretely, the following considerations can be helpful in reducing
 the authority of access tokens:

 * Reduce the lifetime of access tokens and rely on refresh tokens
 for straightforward access token renewal

 * Reduce the scopes or permissions associated with the access token

 * Use [RFC8707] to restrict access tokens to a single resource

 When OpenID Connect is used, it is important to avoid sensitive
 information disclosure through the claims in the ID Token. The
 authorization server SHOULD NOT include any ID token claims that
 aren’t used by the client.

9.2. Sender-Constrained Tokens

 As discussed throughout this document, the use of sender-constrained
 tokens does not solve the security limitations of browser-only OAuth
 clients. However, when the level of security offered by a token-
 mediating backend (Section 6.2) or a browser-only OAuth client
 (Section 6.3) suffices for the use case at hand, sender-constrained
 tokens can be used to enhance the security of both access tokens and
 refresh tokens. One method of implementing sender-constrained tokens
 in a way that is usable from browser-based apps is [DPoP].

 When using sender-constrained tokens, the OAuth client has to prove
 possession of a private key in order to use the token, such that the
 token isn’t usable by itself. If a sender-constrained token is
 stolen, the attacker wouldn’t be able to use the token directly, they
 would need to also steal the private key. In essence, one could say
 that using sender-constrained tokens shifts the challenge of securely
 storing the token to securely storing the private key.

 If an application is using sender-constrained tokens, the secure
 storage of the private key is more important than the secure storage
 of the token. Ideally the application should use a non-exportable
 private key, such as generating one with the [WebCryptographyAPI].
 With an unencrypted token in localStorage protected by a non-
 exportable private key, an XSS attack would not be able to extract
 the key, so the token would not be usable by the attacker.

Parecki, et al. Expires 31 August 2024 [Page 50]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 If the application is unable to use an API that generates a non-
 exportable key, the application should take measures to isolate the
 private key from its own execution context. The techniques for doing
 so are similar to using a secure token storage mechanism, as
 discussed in Section 8.

 While a non-exportable key is protected from exfiltration from within
 JavaScript, exfiltration of the underlying private key from the
 filesystem is still a concern. As of the time of this writing, there
 is no guarantee made by the [WebCryptographyAPI] that a non-
 exportable key is actually protected by a Trusted Platform Module
 (TPM) or stored in an encrypted form on disk. Exfiltration of the
 non-exportable key from the underlying filesystem may still be
 possible if the attacker can get access to the filesystem of the
 user’s machine, for example via malware.

9.3. Authorization Server Mix-Up Mitigation

 Authorization server mix-up attacks mark a severe threat to every
 client that supports at least two authorization servers. To conform
 to this BCP such clients MUST apply countermeasures to defend against
 mix-up attacks.

 It is RECOMMENDED to defend against mix-up attacks by identifying and
 validating the issuer of the authorization response. This can be
 achieved either by using the iss response parameter, as defined in
 [RFC9207], or by using the iss claim of the ID token when using
 OpenID Connect.

 Alternative countermeasures, such as using distinct redirect URIs for
 each issuer, SHOULD only be used if identifying the issuer as
 described is not possible.

 Section 4.4 of [oauth-security-topics] provides additional details
 about mix-up attacks and the countermeasures mentioned above.

9.4. Isolating Applications using Origins

 Many of the web’s security mechanisms rely on origins, which are
 defined as the triple <scheme, hostname, port>. For example,
 browsers automatically isolate browsing contexts with different
 origins, limit resources to certain origins, and apply CORS
 restrictions to outgoing cross-origin requests.

Parecki, et al. Expires 31 August 2024 [Page 51]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Therefore, it is considered a best practice to avoid deploying more
 than one application in a single origin. An architecture that only
 deploys a single application in an origin can leverage these browser
 restrictions to increase the security of the application.
 Additionally, having a single origin per application makes it easier
 to configure and deploy security measures such as CORS, CSP, etc.

10. IANA Considerations

 This document does not require any IANA actions.

11. References

11.1. Normative References

 [CookiePrefixes]
 Contributors, M., "Using HTTP cookies", n.d.,
 <https://developer.mozilla.org/en-US/docs/Web/HTTP/
 Cookies>.

 [draft-ietf-httpbis-rfc6265bis]
 Chen, L., Englehardt, S., West, M., and J. Wilander,
 "Cookies: HTTP State Management Mechanism", October 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 rfc6265bis>.

 [Fetch] whatwg, "Fetch", 2018, <https://fetch.spec.whatwg.org/>.

 [oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

Parecki, et al. Expires 31 August 2024 [Page 52]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC9207] Meyer zu Selhausen, K. and D. Fett, "OAuth 2.0
 Authorization Server Issuer Identification", RFC 9207,
 DOI 10.17487/RFC9207, March 2022,
 <https://www.rfc-editor.org/info/rfc9207>.

11.2. Informative References

 [CSP3] West, M., "Content Security Policy", October 2018,
 <https://www.w3.org/TR/CSP3/>.

 [DPoP] Fett, D., Cambpell, B., Bradley, J., Lodderstedt, T.,
 Jones, M., and D. Waite, "Demonstrating Proof-of-
 Possession at the Application Layer", n.d.,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 dpop>.

 [HTML] whatwg, "HTML", 2020, <https://html.spec.whatwg.org/>.

 [OpenID] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
 February 2020, <https://www.rfc-editor.org/info/rfc8707>.

 [Site] Contributors, M., "Site", n.d.,
 <https://developer.mozilla.org/en-US/docs/Glossary/Site>.

Parecki, et al. Expires 31 August 2024 [Page 53]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 [tmi-bff] Bertocci, V. and B. Cambpell, "Token Mediating and session
 Information Backend For Frontend", April 2021,
 <https://datatracker.ietf.org/doc/html/draft-bertocci-
 oauth2-tmi-bff-01>.

 [WebCryptographyAPI]
 Huigens, D., "Web Cryptography API", November 2022,
 <https://w3c.github.io/webcrypto/>.

 [WebMessaging]
 whatwg, "HTML Living Standard - Cross-document messaging",
 December 2023, <https://html.spec.whatwg.org/multipage/
 web-messaging.html#web-messaging>.

Appendix A. Server Support Checklist

 OAuth authorization servers that support browser-based apps MUST:

 1. Support PKCE [RFC7636]. Required to protect authorization code
 grants sent to public clients. See Section 6.3.2.1.1

 2. NOT support the Resource Owner Password grant for browser-based
 clients.

 3. NOT support the Implicit grant for browser-based clients.

 4. Require "https" scheme redirect URIs for browser-based clients.

 5. Require exact matching of registered redirect URIs for browser-
 based clients.

 6. Support cross-domain requests at endpoints browser-based clients
 access in order to allow browsers to make the authorization code
 exchange request. See Section 6.1.3.3.2

 7. Not assume that browser-based clients can keep a secret, and
 SHOULD NOT issue secrets to applications of this type.

 8. Follow the [oauth-security-topics] recommendations on refresh
 tokens, as well as the additional requirements described in
 Section 6.3.2.7.

Appendix B. Document History

 [[To be removed from the final specification]]

 -17

Parecki, et al. Expires 31 August 2024 [Page 54]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Added a section on anti-forgery/double-submit cookies as another
 form of CSRF protection

 * Updated CORS terminology

 * Moved new section on in-browser flows as not applicable to BFF or
 TM patterns

 * Fixed usage of some browser technology terminology

 * Editorial improvements

 -16

 * Applied editorial changes from Filip Skokan and Louis Jannett

 * Clarified when cookie encryption applies

 * Added a section with security considerations on the use of
 postMessage

 -15

 * Consolidated guidelines for public JS clients in a single section

 * Added more focus on best practices at the start of the document

 * Restructured document to have top-level recommended and
 discouraged architecture patterns

 * Added Philippe De Ryck as an author

 -14

 * Minor editorial fixes and clarifications

 * Updated some references

 * Added a paragraph noting the possible exfiltration of a non-
 exportable key from the filesystem

 -13

 * Corrected some uses of "DOM"

 * Consolidated CSRF recommendations into normative part of the
 document

Parecki, et al. Expires 31 August 2024 [Page 55]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Added links from the summary into the later sections

 * Described limitations of Service Worker storage

 * Minor editorial improvements

 -12

 * Revised overview and server support checklist to bring them up to
 date with the rest of the draft

 * Added a new section about options for storing tokens

 * Added a section on sender-constrained tokens and a reference to
 DPoP

 * Rephrased the architecture patterns to focus on token acquisition

 * Added a section discussing why not to use the Cookie API to store
 tokens

 -11

 * Added a new architecture pattern: Token-Mediating Backend

 * Revised and added clarifications for the Service Worker pattern

 * Editorial improvements in descriptions of the different
 architectures

 * Rephrased headers

 -10

 * Revised the names of the architectural patterns

 * Added a new pattern using a service worker as the OAuth client to
 manage tokens

 * Added some considerations when storing tokens in Local or Session
 Storage

 -09

 * Provide additional context for the same-domain architecture
 pattern

Parecki, et al. Expires 31 August 2024 [Page 56]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Added reference to draft-ietf-httpbis-rfc6265bis to clarify that
 SameSite is not the only CSRF protection measure needed

 * Editorial improvements

 -08

 * Added a note to use the "Secure" cookie attribute in addition to
 SameSite etc

 * Updates to bring this draft in sync with the latest Security BCP

 * Updated text for mix-up countermeasures to reference the new "iss"
 extension

 * Changed "SHOULD" for refresh token rotation to MUST either use
 rotation or sender-constraining to match the Security BCP

 * Fixed references to other specs and extensions

 * Editorial improvements in descriptions of the different
 architectures

 -07

 * Clarify PKCE requirements apply only to issuing access tokens

 * Change "MUST" to "SHOULD" for refresh token rotation

 * Editorial clarifications

 -06

 * Added refresh token requirements to AS summary

 * Editorial clarifications

 -05

 * Incorporated editorial and substantive feedback from Mike Jones

 * Added references to "nonce" as another way to prevent CSRF attacks

 * Updated headers in the Implicit Flow section to better represent
 the relationship between the paragraphs

 -04

Parecki, et al. Expires 31 August 2024 [Page 57]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 * Disallow the use of the Password Grant

 * Add PKCE support to summary list for authorization server
 requirements

 * Rewrote refresh token section to allow refresh tokens if they are
 time-limited, rotated on each use, and requiring that the rotated
 refresh token lifetimes do not extend past the lifetime of the
 initial refresh token, and to bring it in line with the Security
 BCP

 * Updated recommendations on using state to reflect the Security BCP

 * Updated server support checklist to reflect latest changes

 * Updated the same-domain JS architecture section to emphasize the
 architecture rather than domain

 * Editorial clarifications in the section that talks about OpenID
 Connect ID tokens

 -03

 * Updated the historic note about the fragment URL clarifying that
 the Session History API means browsers can use the unmodified
 Authorization Code flow

 * Rephrased "Authorization Code Flow" intro paragraph to better lead
 into the next two sections

 * Softened "is likely a better decision to avoid using OAuth
 entirely" to "it may be..." for common-domain deployments

 * Updated abstract to not be limited to public clients, since the
 later sections talk about confidential clients

 * Removed references to avoiding OpenID Connect for same-domain
 architectures

 * Updated headers to better describe architectures (Apps Served from
 a Static Web Server -> JavaScript Applications without a Backend)

 * Expanded "same-domain architecture" section to better explain the
 problems that OAuth has in this scenario

 * Referenced Security BCP in implicit flow attacks where possible

 * Minor typo corrections

Parecki, et al. Expires 31 August 2024 [Page 58]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 -02

 * Rewrote overview section incorporating feedback from Leo Tohill

 * Updated summary recommendation bullet points to split out
 application and server requirements

 * Removed the allowance on hostname-only redirect URI matching, now
 requiring exact redirect URI matching

 * Updated Section 6.2 to drop reference of SPA with a backend
 component being a public client

 * Expanded the architecture section to explicitly mention three
 architectural patterns available to JS apps

 -01

 * Incorporated feedback from Torsten Lodderstedt

 * Updated abstract

 * Clarified the definition of browser-based apps to not exclude
 applications cached in the browser, e.g. via Service Workers

 * Clarified use of the state parameter for CSRF protection

 * Added background information about the original reason the
 implicit flow was created due to lack of CORS support

 * Clarified the same-domain use case where the SPA and API share a
 cookie domain

 * Moved historic note about the fragment URL into the Overview

Appendix C. Acknowledgements

 The authors would like to acknowledge the work of William Denniss and
 John Bradley, whose recommendation for native apps informed many of
 the best practices for browser-based applications. The authors would
 also like to thank Hannes Tschofenig and Torsten Lodderstedt, the
 attendees of the Internet Identity Workshop 27 session at which this
 BCP was originally proposed, and the following individuals who
 contributed ideas, feedback, and wording that shaped and formed the
 final specification:

Parecki, et al. Expires 31 August 2024 [Page 59]

Internet-Draft OAuth 2.0 for Browser-Based Apps February 2024

 Annabelle Backman, Brian Campbell, Brock Allen, Christian Mainka,
 Damien Bowden, Daniel Fett, Elar Lang, Eva Sarafianou, Filip Skokan,
 George Fletcher, Hannes Tschofenig, Janak Amarasena, John Bradley,
 Joseph Heenan, Justin Richer, Karl McGuinness, Karsten Meyer zu
 Selhausen, Leo Tohill, Louis Jannett, Mike Jones, Sean Kelleher,
 Thomas Broyer, Tomek Stojecki, Torsten Lodderstedt, Vittorio Bertocci
 and Yannick Majoros.

Authors’ Addresses

 Aaron Parecki
 Okta
 Email: aaron@parecki.com
 URI: https://aaronparecki.com

 David Waite
 Ping Identity
 Email: david@alkaline-solutions.com

 Philippe De Ryck
 Pragmatic Web Security
 Email: philippe@pragmaticwebsecurity.com

Parecki, et al. Expires 31 August 2024 [Page 60]

