
Internet Engineering Task Force                              T. Harrison

Internet-Draft                                             G. Michaelson

Intended status: Standards Track                                   APNIC

Expires: August 5, 2019                                        A. Newton

                                                                    ARIN

                                                        February 1, 2019

                     RDAP Mirroring Protocol (RMP)

                draft-harrison-regext-rdap-mirroring-00

Abstract

   The Registration Data Access Protocol (RDAP) is used by Regional

   Internet Registries (RIRs) and Domain Name Registries (DNRs) to

   provide access to their resource registration information.  While

   most clients can retrieve the information they need on an ad hoc

   basis from the public services maintained by each registry, there are

   instances where local copies of those remote data sources need to be

   maintained, for various reasons (e.g.  performance requirements).

   This document defines a protocol for transferring bulk RDAP response

   data and for keeping a local copy of that data up to date.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 5, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of

Harrison, et al.         Expires August 5, 2019                 [Page 1]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect

   to this document.  Code Components extracted from this document must

   include Simplified BSD License text as described in Section 4.e of

   the Trust Legal Provisions and are provided without warranty as

   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3

   2.  RDAP Mirroring Protocol Implementation  . . . . . . . . . . .   3

     2.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   3

     2.2.  File Definitions  . . . . . . . . . . . . . . . . . . . .   4

       2.2.1.  Update Notification File  . . . . . . . . . . . . . .   4

       2.2.2.  Snapshot File . . . . . . . . . . . . . . . . . . . .   5

       2.2.3.  Delta File  . . . . . . . . . . . . . . . . . . . . .   6

     2.3.  RDAP Objects  . . . . . . . . . . . . . . . . . . . . . .   7

     2.4.  Serial Numbers  . . . . . . . . . . . . . . . . . . . . .   9

     2.5.  Server Use  . . . . . . . . . . . . . . . . . . . . . . .   9

       2.5.1.  Initialization  . . . . . . . . . . . . . . . . . . .   9

       2.5.2.  Publishing Updates  . . . . . . . . . . . . . . . . .  10

       2.5.3.  Consolidation . . . . . . . . . . . . . . . . . . . .  10

     2.6.  Client Use  . . . . . . . . . . . . . . . . . . . . . . .  11

       2.6.1.  Processing the Update Notification File . . . . . . .  11

         2.6.1.1.  Initial . . . . . . . . . . . . . . . . . . . . .  11

         2.6.1.2.  Subsequent  . . . . . . . . . . . . . . . . . . .  12

   3.  Operational Considerations  . . . . . . . . . . . . . . . . .  12

   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  12

   5.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  13

   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13

   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  13

     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  13

     7.2.  Informative References  . . . . . . . . . . . . . . . . .  14

   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   The Registration Data Access Protocol (RDAP) [RFC7480] is used by

   Regional Internet Registries (RIRs) and Domain Name Registries (DNRs)

   to provide access to their resource registration information.  For a

   client, this typically involves following the bootstrap process

   [RFC7484] to determine the base URL for the query, constructing an

   RDAP request, sending it, and then processing the response.

   This mode of operation is appropriate for many use cases.  However,

   some clients may need local access to the whole data set:

Harrison, et al.         Expires August 5, 2019                 [Page 2]



Internet-Draft           RDAP Mirroring Protocol           February 2019

      their performance requirements may be such that the time required

      for sending/receiving HTTP requests to arbitrary remote servers is

      not acceptable;

      they may be conducting analysis of the data set as a whole; or

      they may be providing access to the data set in their own right,

      as an alternative to redirecting to the authoritative source for

      the data.

   This document defines a protocol that can be used by a client to

   retrieve a local copy of a remote RDAP data set, as well as to

   maintain that local copy as further remote updates occur.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  RDAP Mirroring Protocol Implementation

2.1.  Overview

   A registry that wants to make use of this protocol publishes an

   Update Notification File to a specified URL.  That file in turn links

   to a Snapshot File and a series of Delta Files.  The Snapshot File

   contains all of the registry’s RDAP state as at a given point in

   time.  The Delta Files contain changes that have been made to the

   registry’s RDAP state since the Snapshot File was generated.

   As further changes are made to the registry’s RDAP state, the

   registry publishes new Delta Files, amends the Update Notification

   File to include links to the new Delta Files, and then republishes

   the Update Notification File.  Periodically, the registry regenerates

   and republishes the Snapshot File, which in turn allows for older

   Delta Files to be removed from the Update Notification File.

   All files in the protocol are signed by the server using JSON Web

   Signature (JWS) [RFC7515].  The JSON Web Key (JWK) [RFC7517] used by

   the server to sign the files is distributed out-of-band.

   A client that wants to make use of this protocol needs to learn the

   server’s Update Notification File URL and JSON Web Key out-of-band.

   Once these are known, the client retrieves the Update Notification

   File, validates its signature, and follows the links in it to

   retrieve the Snapshot File and Delta Files.  It validates the

   signatures on these files, and then uses them to initialize its local

Harrison, et al.         Expires August 5, 2019                 [Page 3]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   state.  It then records the serial number of the most-recently-issued

   Delta File, or of the Snapshot File if no Delta Files are present.

   The client will then periodically retrieve the Update Notification

   File, determine the Delta Files that have been added since it was

   last retrieved by the client, retrieve those Delta Files, and update

   its local state accordingly.

   A server may opt not to publish a Snapshot File in the Update

   Notification File.  Such servers will only publish Delta Files in

   their Update Notification File, and must distribute the Snapshot File

   out-of-band.

2.2.  File Definitions

2.2.1.  Update Notification File

   Example Update Notification File:

   {

       "version": 1,

       "refresh": 3600,

       "snapshot": { "uri": "https://example.com/1/snapshot.json",

                     "serial": 1 },

       "deltas": [

           { "uri": "https://example.com/2/delta.json",

             "serial": 2 },

           { "uri": "https://example.com/3/delta.json",

             "serial": 3 },

       ]

   }

   The following validation rules MUST be observed when creating or

   parsing Update Notification Files:

      Update Notification Files MUST be well-formed JSON [RFC8259].

      The "version" attribute in the root element MUST be present, with

      a value of "1".

      A "refresh" attribute MAY be present.  If it is present, it is an

      integer representing how long the client should wait (in seconds)

      after retrieving the Update Notification File before attempting to

      retrieve it again.

Harrison, et al.         Expires August 5, 2019                 [Page 4]



Internet-Draft           RDAP Mirroring Protocol           February 2019

      A "snapshot" attribute containing a link to a Snapshot File MAY be

      present.

      A "deltas" attribute containing an array of links to Delta Files

      MUST be present.  If no Delta Files have been published by the

      server, this array will be empty.

      The Delta File entries in the "deltas" attribute MUST be in serial

      number order, and the serial numbers MUST form a contiguous

      sequence.

      If a Snapshot File is included, its serial number MUST either be

      equal to that of one of the Delta Files, or one less than the

      smallest Delta File serial number.

2.2.2.  Snapshot File

   Example Snapshot File:

   {

       "version": 1,

       "serial": 3,

       "defaults": { "port43": "whois.example.com",

                     ... },

       "objects": [

           { "id": "https://example.org/I1",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "ip network",

                         ... } },

           { "id": "https://example.org/D2",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "domain",

                         ... } },

           ...

       ]

   }

   The following validation rules MUST be observed when creating or

   parsing Snapshot Files:

      Snapshot Files MUST be well-formed JSON [RFC8259].

      The "version" attribute in the root element MUST be present, with

      a value of "1".

Harrison, et al.         Expires August 5, 2019                 [Page 5]



Internet-Draft           RDAP Mirroring Protocol           February 2019

      The "serial" attribute in the root element MUST be present, with a

      value that is an unsigned 32-bit integer.

      An "objects" attribute containing an array of RDAP object (see

      [RFC7483]) and identifier pairs MUST be present.  If no RDAP

      objects have been published by the server, this array will be

      empty.

      A "defaults" attribute MAY be present.  For each object received

      from the server, the client should treat the object as also having

      each attribute from the "defaults" attribute, except where the

      object already contains an attribute with that name.  This applies

      to objects received both before and after the Snapshot File is

      processed.

2.2.3.  Delta File

   Example Delta File:

   {

       "version": 1,

       "serial": 4,

       "defaults": { "port43": "whois-2.example.org",

                     ... },

       "removed_objects": [ "1" ],

       "added_or_updated_objects": [

           { "id": "https://example.org/I3",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "ip network",

                         ... } },

           { "id": "https://example.org/D4",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "domain",

                         ... } },

           ...

       ]

   }

   The following validation rules MUST be observed when creating or

   parsing Delta Files:

      Snapshot Files MUST be well-formed JSON [RFC8259].

      The "version" attribute in the root element MUST be present, with

      a value of "1".

Harrison, et al.         Expires August 5, 2019                 [Page 6]



Internet-Draft           RDAP Mirroring Protocol           February 2019

      The "serial" attribute in the root element MUST be present, with a

      value that is an unsigned 32-bit integer.

      A "defaults" attribute MAY be present.  For each object received

      from the server, the client should treat the object as also having

      each attribute from the "defaults" attribute, except where the

      object already contains an attribute with that name.  This applies

      to objects received both before and after the Delta File is

      processed.

      A "removed_objects" attribute containing an array of RDAP object

      identifiers MUST be present.  If no RDAP objects have been removed

      since the previous Delta File was generated by the server, this

      array will be empty.

      An "added_or_updated_objects" attribute containing an array of

      RDAP object (see [RFC7483]) and identifier pairs MUST be present.

      If no RDAP objects have been added or updated since the previous

      Delta File was generated by the server, this array will be empty.

2.3.  RDAP Objects

   The base RDAP object definitions from [RFC7483] do not contain any

   mandatory attributes.  For the purposes of this protocol, each RDAP

   object MUST include an "rdapConformance" attribute, so that a client

   can determine whether the object is one that it is able to process.

   Each RDAP object is paired with an identifier (the "id" attribute in

   the parent object).  The "id" attribute value MUST be a URI

   ([RFC3986]).  Its value uniquely identifies an RDAP object within the

   data set, so as to support internal linking and for subsequent

   removal of the object by a Delta File.

   In each RDAP object, each link to an RDAP object that is a member of

   the data set for which the server is providing mirroring MUST have as

   the value of its "href" attribute the identifier for that object

   (i.e.  the value of the "id" attribute from the target’s parent

   object).  This includes self-references (i.e.  links with the "self"

   relation type).

   If a server includes a link object with the "self" relation type with

   each of its RDAP objects, then using the value of the "href"

   attribute of that link object as the identifier for each RDAP object

   is RECOMMENDED.

   For example, a Delta File containing an entity object, along with an

   IP network object that links to it:

Harrison, et al.         Expires August 5, 2019                 [Page 7]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   {

       "version": 1,

       "serial": 5,

       "removed_objects": [],

       "added_or_updated_objects": [

           { "id": "https://example.org/E5",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "entity",

                         "handle": "E5",

                         "links": [

                             { "rel": "self",

                               "href": "https://example.org/E5",

                               ... }

                         ],

                         ... } },

           { "id": "https://example.org/I6",

             "object": { "rdapConformance": [ "rdap_level_0" ],

                         "objectClassName": "ip network",

                         "links": [

                             { "rel": "self",

                               "href": "https://example.org/I6",

                               ... }

                         ],

                         "entities": [

                             { "handle": "E5",

                               "links": [

                                   { "rel": "self",

                                     "href": "https://example.org/E5",

                                     ... }

                               ],

                               ... }

                         ],

                         ... } }

           ...

       ]

   }

   A server MAY omit from an object data that it returns as part of its

   corresponding public service response, when that data can be

   determined by reference to another object in the data set.  In such

   cases, the server MUST include a "links" attribute containing a link

   object with a "self" relation, so that the target object can be

   resolved by the client.

Harrison, et al.         Expires August 5, 2019                 [Page 8]



Internet-Draft           RDAP Mirroring Protocol           February 2019

2.4.  Serial Numbers

   Serial numbers in the files defined in this protocol are unsigned

   32-bit integers.  For the purposes of this protocol, the serial

   number arithmetic defined in [RFC1982] applies.

2.5.  Server Use

2.5.1.  Initialization

   If a server is publishing a Snapshot File via the Update Notification

   File, then initialization is like so:

      generate an initial Snapshot File, with a serial number selected

      by the server;

      sign the Snapshot File using JWS, and publish the result using JWS

      Compact Serialization at a URL that is unique to this serial

      number;

      generate an initial Update Notification File, with a serial number

      equal to that of the Snapshot File, and containing a link to the

      Snapshot File; and

      sign the Update Notification File using JWS, and publish the

      result using JWS Compact Serialization.

   To avoid doubt, any RDAP object that is part of the data set for

   which the server is providing mirroring, as well as being the target

   of a link contained within another RDAP object, MUST be present

   within the Snapshot File.

   If a server is not publishing a Snapshot File via the Update

   Notification File, then initialization is like so:

      generate an initial Snapshot File, with a serial number selected

      by the server;

      sign the Snapshot File using JWS, and distribute the result to

      clients out-of-band using JWS Compact Serialization;

      generate an initial Update Notification File, containing no

      Snapshot File link or Delta File links, with a serial number equal

      to that of the Snapshot File (i.e.  the one that will be

      distributed out-of-band); and

      sign the Update Notification File using JWS, and publish the

      result using JWS Compact Serialization.

Harrison, et al.         Expires August 5, 2019                 [Page 9]



Internet-Draft           RDAP Mirroring Protocol           February 2019

2.5.2.  Publishing Updates

   The server periodically publishes changes that have been made to its

   RDAP state as Delta Files.  The timing and frequency of publication

   is a local policy matter for the server.  The process is like so:

      if a Delta File has been generated previously: generate a new

      Delta File, containing the changes that have been made to the RDAP

      state since the last Delta File was generated, with a serial

      number that is one greater than the serial number of the last

      Delta File;

      if no Delta File has been generated previously: generate a new

      Delta File, containing the changes that have been made to the RDAP

      state since the last Snapshot File was generated, with a serial

      number that is one greater than the serial number of the last

      Snapshot File;

      sign the Delta File using JWS, and publish the result using JWS

      Compact Serialization at a URL that is unique to its serial

      number;

      take the currently-published Update Notification File, increment

      its serial number, add a link to the new Delta File, and

      optionally perform the steps described in the "Consolidation"

      section below; and

      sign the Update Notification File using JWS, and publish the

      result using JWS Compact Serialization.

   Delta Files MUST NOT remove an RDAP object that would cause a

   relative reference link within the client’s local state to become

   unresolvable.

2.5.3.  Consolidation

   On publishing an update, the server may optionally consolidate the

   Snapshot File and Delta Files that it is publishing.  The process is

   like so:

      if the server is publishing a Snapshot File: generate a new

      Snapshot File based on the server’s current state with a serial

      number equal to that of the new Delta File, publish the new

      Snapshot File, and replace the link in the Update Notification

      File to the previous Snapshot File with a link to the new Snapshot

      File; and

Harrison, et al.         Expires August 5, 2019                [Page 10]



Internet-Draft           RDAP Mirroring Protocol           February 2019

      remove Delta Files from the Update Notification File that have

      become stale.

   Whether a given Delta File is ’stale’ is a local policy matter for

   the server.

2.6.  Client Use

2.6.1.  Processing the Update Notification File

2.6.1.1.  Initial

   The client downloads the signed Update Notification File using the

   URL provided by the server (out-of-band) and validates the signature

   against the server’s JWK.

   The client validates the signature of the Snapshot File against the

   server’s JWK, and then uses that file to initialize its local state

   by adding all of the objects from the "objects" attribute.  It then

   records the serial number of the Snapshot File.  The signed Snapshot

   File is either accessible from the Update Notification File, or made

   available to the client out-of-band.

   The client then processes each Delta File from the Update

   Notification File in order, from the Delta File with a serial number

   one greater than the client’s recorded serial number, through to the

   Delta File with the largest serial number, in order to update its

   local state.

   Processing a Delta File involves three steps:

      verify the signature against the server’s JWK;

      for each entry in the "removed_objects" attribute, remove from the

      local state any object with an "id" attribute value equal to the

      entry;

      for each entry in the "added_or_updated_objects" attribute: if an

      object with the given values for the "id" attribute exists in the

      local state, then replace that object with the new object;

      otherwise, add the new object to the local state.

   Once this is complete, the client records the serial number of the

   last Delta File that it processed.

Harrison, et al.         Expires August 5, 2019                [Page 11]



Internet-Draft           RDAP Mirroring Protocol           February 2019

2.6.1.2.  Subsequent

   The client downloads the signed Update Notification File using the

   URL provided by the server (out-of-band), and validates the signature

   against the server’s JWK.  If the frequency with which the client

   should do this has been suggested by the server via the "refresh"

   attribute, the client SHOULD honor that suggestion.  If the "refresh"

   attribute is not present, retrieval frequency is a local policy

   matter for the client.

   The client then processes each Delta File from the Update

   Notification File in order, from the Delta File with a serial number

   one greater than that which has been recorded, through to the Delta

   File with the largest serial number.  Processing of the Delta Files

   is otherwise as per the instructions for initial processing.

   If the Update Notification File retrieved by the client does not

   contain a Delta File with a serial number one greater than that which

   has been recorded, the client MUST delete all of its local state and

   reinitialize itself.  If the Update Notification File contains a

   Snapshot File, then that Snapshot File can be used for

   reinitialization.  If it does not, then a new Snapshot File must be

   located out-of-band.

3.  Operational Considerations

   A server may omit previously-published Delta Files from its Update

   Notification File as a matter of local policy.  If a server is

   publishing its Snapshot Files out-of-band, then omitting a Delta File

   that a client needs will result in the client needing to perform an

   out-of-band action in order to reinitialize its state.  Even if a

   server is linking to its Snapshot Files from the Update Notification

   File, reinitialization may be an expensive operation for a client.

   Servers should consider adopting local policy that limits the chance

   of reinitialization happening: for example, by using the "refresh"

   attribute value in the Update Notification File.

4.  Security Considerations

   [RFC7481] describes security requirements and considerations for RDAP

   generally.  Those requirements and considerations also apply to the

   use of this protocol.

   This protocol requires the use of JWS ([RFC7515]) and JWK

   ([RFC7517]), which in turn refer to JSON Web Algorithms (JWA)

   ([RFC7518]).  Implementations MUST support ES256 as defined in JWA

   ([RFC7518], section 3.4) for signing and validating files in this

   protocol.  Implementations MAY support other algorithms from the

Harrison, et al.         Expires August 5, 2019                [Page 12]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   "JSON Web Signature and Encryption Algorithms" registry created by

   [RFC7518].

5.  Acknowledgements

   This protocol is largely a repurposing of the RPKI Repository Delta

   Protocol (RRDP) [RFC8182] for RDAP.  Much of the terminology (e.g.

   Update Notification File, Snapshot File, Delta File) is taken from

   that document, and the structure is also quite similar.

   Experience with the Near Real Time Mirroring (NRTM) [NRTM] protocol,

   which serves a similar purpose for databases that are based on the

   Routing Policy Specification Language (RPSL) [RFC2622], helped to

   inform this corresponding effort in RDAP.

6.  IANA Considerations

   TBD

7.  References

7.1.  Normative References

   [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,

              DOI 10.17487/RFC1982, August 1996,

              <https://www.rfc-editor.org/info/rfc1982>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

              Resource Identifier (URI): Generic Syntax", STD 66,

              RFC 3986, DOI 10.17487/RFC3986, January 2005,

              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC7481]  Hollenbeck, S. and N. Kong, "Security Services for the

              Registration Data Access Protocol (RDAP)", RFC 7481,

              DOI 10.17487/RFC7481, March 2015,

              <https://www.rfc-editor.org/info/rfc7481>.

   [RFC7483]  Newton, A. and S. Hollenbeck, "JSON Responses for the

              Registration Data Access Protocol (RDAP)", RFC 7483,

              DOI 10.17487/RFC7483, March 2015,

              <https://www.rfc-editor.org/info/rfc7483>.

Harrison, et al.         Expires August 5, 2019                [Page 13]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   [RFC7515]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web

              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

              2015, <https://www.rfc-editor.org/info/rfc7515>.

   [RFC7517]  Jones, M., "JSON Web Key (JWK)", RFC 7517,

              DOI 10.17487/RFC7517, May 2015,

              <https://www.rfc-editor.org/info/rfc7517>.

   [RFC7518]  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,

              DOI 10.17487/RFC7518, May 2015,

              <https://www.rfc-editor.org/info/rfc7518>.

   [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

              Interchange Format", STD 90, RFC 8259,

              DOI 10.17487/RFC8259, December 2017,

              <https://www.rfc-editor.org/info/rfc8259>.

7.2.  Informative References

   [NRTM]     "Near Real Time Mirroring", December 2010,

              <https://www.ripe.net/manage-ips-and-

              asns/db/support/documentation/mirroring>.

   [RFC2622]  Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D.,

              Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra,

              "Routing Policy Specification Language (RPSL)", RFC 2622,

              DOI 10.17487/RFC2622, June 1999,

              <https://www.rfc-editor.org/info/rfc2622>.

   [RFC7480]  Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the

              Registration Data Access Protocol (RDAP)", RFC 7480,

              DOI 10.17487/RFC7480, March 2015,

              <https://www.rfc-editor.org/info/rfc7480>.

   [RFC7484]  Blanchet, M., "Finding the Authoritative Registration Data

              (RDAP) Service", RFC 7484, DOI 10.17487/RFC7484, March

              2015, <https://www.rfc-editor.org/info/rfc7484>.

   [RFC8182]  Bruijnzeels, T., Muravskiy, O., Weber, B., and R. Austein,

              "The RPKI Repository Delta Protocol (RRDP)", RFC 8182,

              DOI 10.17487/RFC8182, July 2017,

              <https://www.rfc-editor.org/info/rfc8182>.

Authors’ Addresses

Harrison, et al.         Expires August 5, 2019                [Page 14]



Internet-Draft           RDAP Mirroring Protocol           February 2019

   Tom Harrison

   Asia-Pacific Network Information Centre

   6 Cordelia St

   South Brisbane, QLD  4101

   Australia

   Email: tomh@apnic.net

   George G. Michaelson

   Asia-Pacific Network Information Centre

   6 Cordelia St

   South Brisbane, QLD  4101

   Australia

   Email: ggm@apnic.net

   Andrew Lee Newton

   American Registry for Internet Numbers

   PO Box 232290

   Centreville, VA  20120

   United States of America

   Email: andy@arin.net

Harrison, et al.         Expires August 5, 2019                [Page 15]


