Abstract

Discovery of endpoints and resources in M2M applications over large networks is enabled by Resource Directories, but no special consideration has been given to how such directories can scale beyond what can be managed by a single device.

This document explores different ways in which Resource Directories can be scaled up from single network to enterprise and global scale. It does not attempt to standardize any of those methods, but only to demonstrate the feasibility of such extensions and to provide terminology and exploratory groundwork for later documents.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
2. Terminology ... 3
3. Goals of upscaling 3
 3.1. Large numbers of registrations 3
 3.2. Large number of requests 3
 3.3. Redundancy .. 4
4. Approaches .. 4
 4.1. Shared authority 4
 4.2. Plain caching 5
 4.3. RD-aware caching 6
 4.3.1. Potential for improvement 7
 4.4. Distinct registration points 7
 4.4.1. Redundancy and handover 8
 4.4.2. Loops between RDs and proxies 8
5. Proposed RD extensions 9
 5.1. Provenance ... 9
 5.2. Lifetime reporting 10
6. Example scenarios 11
 6.1. Redundant and replicated resource lookup (anycast) ... 11
 6.2. Redundant and replicated resource lookup (distinct registration points) 12
 6.2.1. Variation: Large number of registrations, localized queries 15
 6.2.2. Variation: Combination with anycast 15
 6.3. Anonymous global endpoint lookup 16
7. References .. 18
 7.1. Informative References 18
 7.2. URIs .. 19
Author's Address ... 19

1. Introduction

[See abstract for now.]

This document is being developed in a git based workflow. Please see https://github.com/chrysn/resource-directory-replication [1] for more details and easy ways to contribute.
2. Terminology

This document assumes familiarity with [RFC7252] and
[I-D.ietf-core-resource-directory] and uses terminology from those
documents.

Examples in which URI paths like "/rd" or "/rd-lookup/res" are used
assume that those URIs have been obtained before by an RD Discovery
process; these paths are only examples, and no implementation should
make assumptions based on the literal paths.

3. Goals of upscaling

The following sections outline different reasons why a Resource
Directory should be scaled beyond a single device. Not all of them
will necessarily apply to all use cases, and not all solution
approaches might be suitable for all goals.

3.1. Large numbers of registrations

Even at 1kB of link data per registration, modern server hardware can
easily keep the data of millions of registrations in RAM
simultaneously. Thus, the mere size of registration data is not
expected to be a factor that requires scaling to multiple nodes.

The traffic produced when millions of nodes with the default 24h
lifetime amounts to dozens of exchanges per second, which is doable
with equal ease at central network equipment.

However, if the directory has additional interaction with its
registered nodes, for example because it provides proxying to
registered endpoints, resources like file descriptors can be
exhausted earlier, and the traffic load on the registration server
grows with the traffic it is proxying for the endpoint.

3.2. Large number of requests

Not all approaches to constrained restful communication use the
Resource Directory only in the setup stage; some might also
utilize a Resource Directory in more day-to-day operation.

[TODO: get some numbers on how many requests a single RD can deal
with.]
3.3. Redundancy

With the RD as a central part of CoRE infrastructures, outages can affect a large number of users.

A decentralized RD should be able to deal both with scheduled downtimes of hosts as well as unexpected outages of hosts or parts of the network, especially with network splits between the individual parts of the directory.

4. Approaches

In this section, two independent chains of approaches are presented. The "shared authority" approach (using anycast or DNS aliases), and proxy-based caching (in stages from using generic proxies to RD replication that only bears little resemblance to proxies).

In the remainder of this document, the term "proxy" always refers to a device which a client can access as if it were a resource directory, and forwards the request to an actual RD.

Elements from those chains can be mixed.

4.1. Shared authority

With this approach, a single host and port (or "authority" component in the generic URI syntax) is used for all interactions with the RD.

This can be implemented using a host name pointing to different IP addresses simultaneously or depending on the requester’s location, using IP anycast addresses or both.

From the client’s or proxy’s point of view, all interaction happens with same Origin Server.

In this setup, the replication is hidden from the REST interactions, and takes place inside the RD server implementation or its database backend.

Compared to the other approaches, this is more complex to set up when it involves managing anycast addresses: Running an IPv4 anycast network on Internet scale requires running an Autonomous System. In either variation, all server instances are tightly coupled; they need shared administration and probably need to run the same software.

The replication characteristics are largely inherited from the underlying backend.
As registering endpoints only store the URI constructed from the Location-Path option to their registration request, registration updates can end up at any instance of the server, though they are likely to reach the same one as before most of the time.

Spontaneous failure of individual nodes can interrupt endpoints’ registrations in scenarios that do not use anycast addresses until the unusable addresses have left DNS caches.

4.2. Plain caching

Caching reverse proxies that are not particularly aware of a Resource Directory can be used to mitigate the effect of large numbers of requests on a single RD server. In this approach, there exists a single central RD server instance, but proxies are placed in front of it to reduce its load.

Caching is applicable only to the lookup interfaces; the POST request used in registration and renewal are not cacheable.

A prerequisite for successful caching is that fresh copies exist in the cache; this is likely to happen only if there are many alike requests to the Resource Directory. The proxy can then serve cached copies, and might find it advantageous to observe frequent queries.

The simplest way to set up such proxying is to have the proxies forward all requests to the central RD and to advertise only the proxies’ addresses.

Due to the discovery process of the RD, operators can also limit the proxies to the lookup interfaces and advertise the central server for registration purposes. A sample exchange between a node and its 6LoWPAN border router could be:

Req: GET coap://[fe80::1]/.well-known/core?rt=core.rd*

Res: 2.05 Content

"coap://central-rd.example.com/rd>;rt="core.rd",
<coap://europe3.proxy.rd.example.com/rd-lookup/res>;rt="core.rd-lookup-res",
<coap://europe3.proxy.rd.example.com/rd-lookup/ep>;rt="core.rd-lookup-ep"

Special care should be taken when a reverse proxy is not accessed by the client under the same address as the origin server, as relative references change their meaning when served from there. This can be ignored completely on the resource lookup interface (as long as the provenance extension is not used); ignoring it on the endpoint lookup interface gives the client "wrong" results, though that is likely to only matter to applications that use both the lookup and the
registration interface, like Commissioning Tools could do. Proxies can be configured to do content transcoding (cf. [RFC8075] Section 6.5.2) to preserve the lookup responses’ original meanings.

This approach does not help at all with large numbers of registrations. It can mitigate issues with large numbers of lookup requests, provided that many identical requests arrive at the proxy. The effect on the redundancy goal is negligible: The proxy can provide lookup results only for as long as the cache is fresh during a central server outage, which is 60 seconds unless the RD server says otherwise.

This approach can be run with off-the-shelf RD servers and proxies. The only configuration required is for the proxy to have a forwarding address, and for the RD (or its announcer) to know which lookup addresses to advertise.

4.3. RD-aware caching

Similar to the above, specialized proxies can be employed that are aware that their target is an RD lookup address.

The "plain caching" approach is limited in that it requires a small set of lookups to be frequently performed. A proxy that is aware that the address it is forwarding to is of the Resource Type "core.rd-lookup-*" can utilize knowledge of how an RD works to serve more specialized requests as well from fresh generic content.

For example, assume that the proxy frequently receives requests of the shape

req: GET /rd-lookup/res?rt=core.s&rt=ex.temperature&ex.building=8341&title=X for arbitrary values of X. Then it can use the following request to keep a fresh cache:

Observe: 1

and from that serve filtered responses to individual requests.

This method shares the advantages of plain caching, with reduced limitations but requiring specialized proxying software. The software does not necessarily need more configuration: A general-purpose proxy is free to explore the origin server’s ".well-known/core" information, and can decide to enable RD optimizations after
discovering that the frequently accesses resources are of resource type "core.rd-lookup-*".

4.3.1. Potential for improvement

Observing a large lookup result is relatively inefficient as the complete document needs to be transferred when a change happens. Serializations of web links that are suitable for expressing small deltas are expected to be developed for PATCH operations on registration resources. If those formats are compatible with observation, they can be applied directly. Otherwise, the proxy can try to establish a "push" dynamic link ([I-D.ietf-core-dynlink]) to receive continuous PATCH updates on its resource.

The applicability of the RD-aware approach is further limited to query parameters of which the proxy knows that they are not subject to lookup filtering on other entities than the queried one. In the example above, were the variable part the "d" attribute (of endpoints, as opposed to the "title" of resources), the proxy could not do the filtering on its own because it would not have the required information. Even the above example does not allow for fully accurate replication, as the endpoint _might_ register with a "title" endpoint attribute, even though no such attribute is specified right now. Also, annotating the links in the endpoint lookup with information about which registration they belong to would help the proxy keep all the data around to solve more complex queries. The provenance extension is proposed for that purpose.

In its extreme form, the proxy can observe the complete endpoint lookup resource of the Resource Directory and run a dedicated observation for each registration. It can then answer all queries on its own based on the continuously fresh state transferred in the observations.

For such proxies, it can be suitable to configure them to use stale cache values for extended periods of time when the RD becomes intermittently unavailable.

4.4. Distinct registration points

Caching proxies that are aware of RD semantics could be extended to gather information from more than one Resource Directory.

When executing queries, they would consider candidates from all configured upstream servers and report the union of the respective query results. At this stage, it is highly recommended that content transcoding takes place.
With this approach, many distinct registration URIs can be advertised, for example due to geographic proximity.

Unlike the other proxying approaches, this helps with the "large number of registrations" goal. If that number is unmanageable for single devices, proxies need not keep full copies of all the RDs' states but rather send out queries to all of their upstreams, behaving more like the "plain caching" proxies. This multiplies the lookup traffic, but allows for huge numbers of registrations. The problems of "too many lookups" versus "too many registrations" can be traded off against each other if the proxies keep parts of the RDs' states locally at hand while forwarding more exotic requests to all RDs.

4.4.1. Redundancy and handover

This approach also tackles the redundancy goal. When an endpoint registers at its RD, the RD updates its endpoint and resource lookup results and includes the registration data until further notice (for correct operation, the "Lifetime Age" extension is useful).

If at some point in time that RD server becomes unavailable, the proxies can keep the cached information around. Before the lifetime expires, the endpoint will attempt to renew its registration and find that the RD is unavailable. It will then go through discovery again, find the most recently advertised registration URI or pick another one out of a set and start a new registration there.

If the lookup proxies do not evict the old (and soon-to-time-out) registration when the new one on a different RD with the same endpoint name and domain arrives, at worst there will be the same information twice from two registration resources available for lookup.

4.4.2. Loops between RDs and proxies

In this configuration, it can be tempting to run a Resource Directory and a lookup proxy (aimed at multiple resource directories) on the same host.

[It might be easier to recommend simply using different hosts, at least host names, in those cases, or anything else that allows direct and not publically advertised access to the real RDs’ lookups.]

In such a setup, other aggregating lookup proxies must take care to only select locally registered entries. With the current filtering rules, observing the resources "/rd-lookup/ep?href=" and "/rd-lookup/res?provenance=" crudely provides that kind of filtering.
5. Proposed RD extensions

5.1. Provenance

In order for an RD-aware proxy to serve resource lookup requests that filter on endpoint parameters, the proxy needs a way to tell which endpoint registration submitted that link. That information might also be useful for other purposes.

This introduces a new link attribute "provenance". Its value is a URI reference as described by [RFC3986] Section 4.1. The URI is to be interpreted by the same rules that apply to the "anchor" attribute, namely by resolving the reference relative to the requested document’s URI. The attribute should not be repeated, and in presence of multiple attributes, only the last should be considered.

[TODO: If a something link-format-ish comes up during the development of this document which allows setting base-hrefs in-line, evaluate whether it really makes sense to inherit anchor’s rules or whether it’s better to phrase it in a way that the requested base URI always counts. A composite CoRAL endpoint-and-resource lookup on the RD might make this extension proposal obsolete.]

The URI given in the "provenance" attribute describes where the information in the link was obtained from. An aggregator of links can thus declare its sources for each link.

It is recommended that a Resource Directory adds the URI of the registration resource to resource lookups. Thus, if an endpoint registers as

Req: POST /rd?ep=node1
Payload:
</sensors/temp>;if="core.s"

Res: 2.01 Created
Location: /reg/1234

then a lookup will add a provenance attribute:

Req: GET /rd-lookup/res?if=core.s

Res: 2.05 Content
Payload:
<coap://.../sensors/temp>;if="core.s";anchor="coap://...";
provenance="/reg/1234"
This is not an IANA consideration as there is no established registry of link attributes.

By itself, the provenance attribute does not need to be registered in the RD Parameters Registry because it is just another link attribute. If it is desired that provenance information is only shown on request (eg. by RD-aware proxies), a parameter can be introduced there:

- Full name: Link provenance
- short: provenance
- Validity: URI
- Use: Resource lookup only
- Description: If "provenance" or any string starting with "provenance=" is given as one of the ampersand-delimited query arguments, the RD is instructed to add the provenance attribute to all looked up links; otherwise, the RD will not present them. The filtering rules still apply: If there is a "=" sign in the query argument, only links with matching provenance will be reported.

5.2. Lifetime reporting

The result of an endpoint lookup as a whole has inhomogenous cache properties that would determine its Max-Age:

- The document can change at any time when a new endpoint registers.
- The document can change at any time when an endpoint deregisters.
- Each record can be expected to not change until its lifetime has expired.

As currently specified, a lookup client has no way to tell where in its lifetime an endpoint is. Therefore, a new link attribute is suggested that allows the RD to share that information:

The new link attribute Lifetime Remaining (lt-remaining) is described for use in RD Endpoint Lookups. Valid values are integers from 0 to the lifetime of the registration. The value indicates how many seconds have passed since the endpoint last renewed its registration.

Care has to be taken when replicating this value in caches, as the caching agent might be unaware of the attribute’s semantics and not update it. (This is unlike the Max-Age attribute, which a caching agent needs to understand and reduce accordingly when serving from
the cache). It should therefore only be used with responses that carry the default Max-Age of 60 or less.

Clients that use the lookup interface (especially RD-aware proxies) are free to treat that record and its corresponding resource records as fresh until after lt-remaining seconds have passed since the endpoint lookup result was obtained, especially if the origin server has become unavailable.

Security considerations: Given that this leaks information about the endpoint’s communication patterns, it may be prudent for an RD only to reveal this information on a need-to-know basis.

6. Example scenarios

6.1. Redundant and replicated resource lookup (anycast)

This scenario describes a setup where millions of devices register in a company-wide Resource Directory.

The directory is scaled using the shared authority / anycast approach, and the RD implementation is backed by a NoSQL-style distributed database.

```
+-------------+        +-------------+        +-------------+
|             |        |             |        |             |
|        RD-A |        |        RD-B |        |        RD-C |
| E   E     E |        | E  E  E  E  E |        | E    C    C |
```

("E" and "C" represent endpoints and lookup clients, respectively)

Both endpoints and lookup clients receive the RD address "2001:db8::an1:ca57" is announced to all devices on the network using the RDAO option in IPv6 Neighbor Discovery. Any packages to that addresses are routed by the network to the closest of the three RD instances A, B and C. Discovery invariably looks like this:
Req: GET coap://[2001:db8::an1:ca57]/.well-known/core?rt=core.rd*

Res: 2.05 Content
</rd>;rt="core.rd",
</rd-lookup/res>;rt="core.rd-lookup-res",
</rd-lookup/ep>;rt="core.rd-lookup-ep"

An endpoint close to B would therefore register with

Req: POST coap://[2001:db8::an1:ca57]/rd?ep=endpoint1&
d=facility23.eu.example.com
Payload:
</sensors/temp>;if="core.s"

Res: 2.01 Created
Location: /reg/123e4567-e89b-12d3-a456-426655440000

Any client could immediately see that the endpoint is registered by issuing

Req: GET coap://[2001:db8::an1:ca57]/rd-lookup/ep?ep=endpoint1&
d=facility23.eu.example.com

Res: 2.05 Content
Payload:
</reg/123e4567-e89b-12d3-a456-426655440000>;ep="endpoint1";
d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

If at any point in time the RD instance B becomes unavailable, the registering endpoint’s renewal requests will be routed to the next available instance, for example A. That instance can update the shared database with renewed lifetime just as B would have done.

How this performs under a net split depends on the database backend. Registration resources based on UUIDs were chosen in this example because those would allow the system to keep accepting new registrations even in a netsplit situation; the risk of the registration request not being idempotent towards a node that switches sides during such a split is considered acceptable.

6.2. Redundant and replicated resource lookup (distinct registration points)

This scenario takes place in the same environment as the previous one.

Rather than a shared database, distinct registration points are advertised. The advertised registration points are called RD-A to
RD-C; independent of them are lookup proxies LP-X to LP-Z. Some of them run on the same hosts.

The lookup proxies in this scenario are constantly observing the "/rd-lookup/ep?href=/*" and "/rd-lookup/res?provenance=/*" resources of known RDs on other hosts, and might get updated internally with state from a co-hosted RD or observe that using an internal interface. As there is no really suitable content format and observation mechanism for those yet, the exchanges are partially described in words here.

RDAO announcements point to the nearest host (whose IP address ends with the numbers of the respective box in the figure), and hosts that do not serve both functions provide lookup as follows:

Req: GET coap://[2001:db8:23::3]/.well-known/core?rt=core.rd*

Res: 2.05 Content
Payload:
</rd>;rt="core.rd",
<coap://[2001:db8:23::2]/rd-lookup/ep>;rt="core.rd-lookup-ep",
<coap://[2001:db8:23::2]/rd-lookup/res>;rt="core.rd-lookup-res"

When a client then registers as

Req: POST coap://[2001:db8:23::3]/rd?ep=endpoint1&
d=facility23.eu.example.com
Payload:
</sensors/temp>;if="core.s"

Res: 2.01 Created
Location: /reg/42
the RD at 3 sends notifications to the observing lookup proxies X, Y and Z:

Res: Patch Result
Add one record: </reg/42>;ep="endpoint1";d="facility23.eu.example.com";
 con="coap://[2001:db8:23::1]";lt-remaining=90000

As soon as that is processed, clients can query LP-Z

Req: GET coap://[2001:db8:4::4]/rd-lookup,ep=endpoint1&
 d=facility23.eu.example.com

Res: 2.05 Content
Payload:
 <coap://[2001:db8:23::3]/reg/42>;ep="endpoint1";
 d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

(Note that lt-remaining is elided to the client as per the security
considerations for that information).

When a net split happens that cuts LP-Z’s site off the rest, it keeps
that information available until the lt-remaining runs out.

When RD-C unexpectedly becomes unavailable, endpoint1 fails to renew
its registration. It then starts the RD discovery process again,
picks the next available RD (this time B) and gets a new registration
from that.

RD-B then sends an update to the proxies:

Res: Patch Result
Add one record: </reg/11>;ep="endpoint1";d="facility23.eu.example.com";
 con="coap://[2001:db8:23::1]";lt-remaining=90000

The proxies remove C’s registration "/reg/42" based on the duplicate
name and now answer requests like this:
Req: GET /rd-lookup/ep?ep=endpoint1&d=facility23.eu.example.com

Res: 2.05 Content
Payload:
<coap://[2001:db8:23::2]/reg/11>;ep="endpoint1";
d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

Req: GET /rd-lookup/res?if=core.s&d=facility23.eu.example.com

Res: 2.05 Content
Payload:
<coap://[2001:db8:23::1]/sensors/temp>;if="core.s";
anchor="coap://[2001:db8:23::1]/sensors/temp";
provenance="coap://[2001:db8:23:2]/reg/11",
...

6.2.1. Variation: Large number of registrations, localized queries

If the lookup proxies are not capable of keeping track of all the registered data, they can opt to forward requests to all the RDs instead. In this example, queries are often localized (queries within a building are often limited to the same building), so LP-Y could decide to only keep two particular observations active to each RD:

- "/rd-lookup/ep?href=/*&d=facility23.eu.example.com"
- "/rd-lookup/res?provenance=/*&d=facility23.eu.example.com"

With those observed, it could still accurately respond to the above queries without calling out to the other RDs.

If a query came in as "/rd-lookup/res?if=core.s", it would still need to forward that query to all RDs to build an overview of all sensors in the network for the requester.

6.2.2. Variation: Combination with anycast

In a variation of this, all the RDs and LPs can use a shared anycast address. They would be then advertised as in the anycast/NoSQL example.

All RDs would need to be configured such that they encode their host name in their path (eg. "/reg/rd-c/42"). Nodes must then have proxy forwarding rules set up such that

- "/rd" is served from the local RD if there is one, or forwarded to any (the closest) RD
"/reg/*" requests are served if hosted locally, otherwise forwarded to the appropriate RD, or respond with a 5.04 Gateway timeout if that is not available any more

- Lookup request are served from the local lookup proxy, or forwarded to the closest one on RD-only hosts.

Such a setup is easier if all hosts provide both registration and lookup functionality.

6.3. Anonymous global endpoint lookup

This scenario describes a way to provide connectivity into devices in difficult network situations based on identifiers of their cryptographic keys, in this case the (sufficiently long) ID context plus recipient ID of OSCORE ([I-D.ietf-core-object-security]). A global network of untrusted Resource Directory servers is built, and the individual servers provide network relaying services for endpoints that operate behind NAT or firewalls.

It assumes the existence of two other hypothetical mechanisms:

- The "proxy" parameter from [I-D.amsuess-core-resource-directory-extensions]
- A URI scheme called "oscore".

A URI of the form "oscore://VGhh...2aWNl/sensor/temp" refers to a resource "/sensor/temp/" on any OSCORE capable host with which the client has a key established under the KID context and recipient ID given by the base64 string in the authority component.

To resolve the URI to a concrete protocol and socket, a form of Resource Directory assisted protocol negotiation is used.

RD servers join a global pool of servers using a protocol that is not further described here, but could conceivably be based on distributed hash tables (DHTs).

Endpoints register only with a key derived name, and usually do not provide any links because those would be accessible only to authenticated requesters.

They register at any of a set of preconfigured DNS names for finding a Resource Directory. Those names resolve to any of the currently active RD servers, where geographic proximity could play a role in the choice of address returned.
When the endpoint discovers the registration URI (for which it uses coap+tcp to make later proxying more stable), the server returns links to its explicit IP address:

<coap+tcp://[2001:db8:1:2::3]/rd>;rt="core.rd",
<coap+tcp://[2001:db8:1:2::3]/rd-lookup/ep>;rt="core.rd-lookup-ep"

(This avoids conflict when the DNS assignment flips and a different host (on which the registration resource is unknown) is returned. Alternatively, the servers could use a unified scheme of registration resource naming like "/reg/${name}" or a UUID-based scheme.)

The endpoint then registers:

Req: POST coap+tcp://[2001:db8:1:2::3]/rd?proxy&ep=VGhhdCdzIHRoZSB\LZX1JZENvbnRleHggX2NlZCBaXRoIHRoaXMgZGV2aWNl
Payload: empty
Res: 2.01 Created
Location: /reg/123

When a client wants to talk to that registered server, its RD discovery process will yield another instance, which it then queries:

Req: GET coap://[2001:db8:4:5::6]/rd-lookup/ep?ep=VGhhdCdzIHRoZSB\ZX1JZENvbnRleHggX2NlZCBaXRoIHRoaXMgZGV2aWNl

The server will look up the given ep name in the backing DHT, and forward the request right to the (precisely: any) RD server that has announced that ep value, which then answers:

Res: 2.05 Created
Payload:
<coap+tcp://[2001:db8:1:2::3]/reg/123>;ep="VGhh...2aWNl";
 con="coap://[2001:db8:1:2::3]:10123";
 at="coap+tcp://[2001:db8:1:2::3]:10123"

(This particular server uses multiple ports to tell traffic for different endpoints apart; it could just as well use a catch-all DNS record, do name based virtual hosting and announce "con="coap://reg123.server3.example.com" instead.)

The client will then use the discovered address to direct its OSCORE requests to, and the RD server will proxy for it.

Note that while this setup _can_ serve as a generic RD and answer resource requests as well, it is doubtful whether there would be any interest in it given the data becomes public, and is limited by the
necessity to have an "ep=" filter in all requests lest the network be flooded with requests.

7. References

7.1. Informative References

[I-D.amsuess-core-resource-directory-extensions]

[I-D.ietf-core-dynlink]

[I-D.ietf-core-object-security]

[I-D.ietf-core-resource-directory]

[RFC3986]

[RFC7252]

[RFC8075]

Amsuess Expires September 12, 2019 [Page 18]
7.2. URIs

Author’s Address

Christian Amsuess
Hollandstr. 12/4
1020
Austria

Phone: +43-664-9790639
Email: christian@amsuess.com
The Constrained RESTful Application Language (CoRAL)
draft-hartke-t2trg-coral-07

Abstract

The Constrained RESTful Application Language (CoRAL) defines a data model and interaction model as well as two specialized serialization formats for the description of typed connections between resources on the Web ("links"), possible operations on such resources ("forms"), as well as simple resource metadata.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 10, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction 3
 1.1. Notational Conventions 4
2. Examples 4
3. Data and Interaction Model 4
 3.1. Browsing Context 4
 3.2. Documents 5
 3.3. Links 5
 3.4. Forms 6
 3.5. Form Fields 7
 3.6. Embedded Representations 7
 3.7. Navigation 7
 3.8. History Traversal 9
4. Binary Format 9
 4.1. Data Structure 10
 4.1.1. Documents 10
 4.1.2. Links 10
 4.1.3. Forms 11
 4.1.4. Embedded Representations 12
 4.1.5. Directives 12
 4.2. Dictionaries 13
 4.2.1. Dictionary References 13
 4.2.2. Media Type Parameter 13
5. Textual Format 14
 5.1. Lexical Structure 14
 5.1.1. Line Terminators 15
 5.1.2. White Space 15
 5.1.3. Comments 15
 5.1.4. Identifiers 15
 5.1.5. IRIs and IRI References 16
 5.1.6. Literals 16
 5.1.7. Punctuators 19
 5.2. Syntactic Structure 20
 5.2.1. Documents 20
 5.2.2. Links 20
 5.2.3. Forms 21
 5.2.4. Embedded Representations 22
 5.2.5. Directives 23
6. Usage Considerations 24
 6.1. Specifying CoRAL-based Applications .. 24
 6.1.1. Application Interfaces 24
 6.1.2. Resource Names 25
 6.1.3. Implementation Limits 25
 6.2. Minting New Relation Types 26
 6.3. Expressing Registered Link Relation Types .. 27
 6.4. Expressing Link Target Attributes 27
 6.5. Expressing Simple RDF Statements 28
1. Introduction

The Constrained RESTful Application Language (CoRAL) is a language for the description of typed connections between resources on the Web ("links"), possible operations on such resources ("forms"), as well as simple resource metadata.

CoRAL is intended for driving automated software agents that navigate a Web application based on a standardized vocabulary of link and form relation types. It is designed to be used in conjunction with a Web transfer protocol such as the Hypertext Transfer Protocol (HTTP) [RFC7230] or the Constrained Application Protocol (CoAP) [RFC7252].

This document defines the CoRAL data and interaction model, as well as two specialized CoRAL serialization formats.

The CoRAL data and interaction model is a superset of the Web Linking model of RFC 8288 [RFC8288]. The data model consists of two primary elements: "links" that describe the relationship between two resources and the type of that relationship, and "forms" that describe a possible operation on a resource and the type of that operation. Additionally, the data model can describe simple resource metadata in a way similar to the Resource Description Framework (RDF) [W3C.REC-rdf11-concepts-20140225]. In contrast to RDF, the focus of CoRAL however is on the interaction with resources, not just the relationships between them. The interaction model derives from HTML 5 [W3C.REC-html52-20171214] and specifies how an automated software agent can navigate between resources by following links and perform operations on resources by submitting forms.
The primary CoRAL serialization format is a compact, binary encoding of links and forms in Concise Binary Object Representation (CBOR) [RFC7049]. It is intended for environments with constraints on power, memory, and processing resources [RFC7228] and shares many similarities with the message format of the Constrained Application Protocol (CoAP) [RFC7252]: For example, it uses numeric identifiers instead of verbose strings for link and form relation types, and pre-parses Uniform Resource Identifiers (URIs) [RFC3986] into (what CoAP considers to be) their components, which simplifies URI processing for constrained nodes a lot. As a result, link serializations in CoRAL are often much more compact than equivalent serializations in CoRE Link Format [RFC6690].

The secondary CoRAL serialization format is a lightweight, textual encoding of links and forms that is intended to be easy to read and write for humans. The format is loosely inspired by the syntax of Turtle [W3C.REC-turtle-20140225] and is mainly intended for giving examples.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Terms defined in this document appear in _cursive_ where they are introduced.

2. Examples

[[NOTE TO READERS: Examples and test vectors will be provided on a companion website.]]

3. Data and Interaction Model

The Constrained RESTful Application Language (CoRAL) is designed for building Web-based applications [W3C.REC-webarch-20041215] in which automated software agents navigate between resources by following links and perform operations on resources by submitting forms.

3.1. Browsing Context

Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent maintains a _browsing context_ in which the representations of Web resources are processed. (In HTML 5, the browsing context typically corresponds to a tab or window in a Web browser.)
At any time, one representation in each browsing context is designated the _active_ representation.

3.2. Documents

A resource representation in one of the CoRAL serialization formats is called a CoRAL _document_. The Internationalized Resource Identifier (IRI) [RFC3987] that was used to retrieve such a document is called the document’s _retrieval context_.

A CoRAL document consists of a list of zero or more links, forms, and embedded resource representations, collectively called _elements_. CoRAL serialization formats may define additional types of elements for efficiency or convenience, such as a base for relative IRI references [RFC3987].

3.3. Links

A _link_ describes a relationship between two resources on the Web [RFC8288]. As defined in RFC 8288, it consists of a _link context_, a _link relation type_, and a _link target_. In CoRAL, a link can additionally have a nested list of zero or more elements, which take the place of link target attributes.

A link can be viewed as a statement of the form "{link context} has a (link relation type) resource at (link target)" where the link target may be further described by nested elements.

The link relation type identifies the semantics of a link. In HTML 5 and RFC 8288, link relation types are typically denoted by an IANA-registered name, such as "stylesheet" or "type". In CoRAL, they are denoted by an IRI such as <http://www.iana.org/assignments/relation/stylesheet> or <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>. This allows for the creation of new link relation types without the risk of collisions when from different organizations or domains of knowledge. An IRI also can lead to documentation, schema, and other information about the link relation type. These IRIs are primarily used as identity tokens, though, and are compared using Simple String Comparison (Section 5.1 of RFC 3987).

The link context and the link target are both either by an IRI or (similarly to RDF) a literal. If the IRI scheme indicates a Web transfer protocol such as HTTP or CoAP, then an agent can dereference the IRI and navigate the browsing context to the referenced resource; this is called _following the link_. A literal directly identifies a value. This can be a Boolean value, an integer, a floating-point number, a date/time value, a byte string, or a text string.
A link can occur as a top-level element in a document or as a nested element within a link. When a link occurs as a top-level element, the link context implicitly is the document’s retrieval context. When a link occurs nested within a link, the link context of the inner link is the link target of the outer link.

There are no restrictions on the cardinality of links; there can be multiple links to and from a particular target, and multiple links of the same or different types between a given link context and target. However, the nested data structure constrains the description of a resource graph to a tree: Links between linked resources can only be described by further nesting links.

3.4. Forms

A _form_ provides instructions to an agent for performing an operation on a Web resource. It consists of a _form context_, a _form relation type_, a _request method_, and a _submission target_. Additionally, a form may be accompanied by a list of _form fields_.

A form can be viewed as an instruction of the form "To perform a (form relation type) operation on (form context), make a (request method) request to (submission target)" where the payload of the request may be further described by any form fields.

The form relation type identifies the semantics of the operation. Form relation types are denoted like link relation types by an IRI.

The form context is the resource on which an operation is ultimately performed. To perform the operation, an agent needs to construct a request with the specified request method and submission target as the request IRI. The submission target typically is the same resource as the form context, but may be a different resource. Constructing and sending the request is called _submitting the form_.

If a form is accompanied by a list of form fields, as described in the following section, then the agent also needs to construct a payload that matches the specifications of the form fields and include that in the request.

A form can occur as a top-level element in a document or as a nested element within a link. When a form occurs as a top-level element, the form context implicitly is the document’s retrieval context. When a form occurs nested within a link, the form context is the link target of the enclosing link.
3.5. Form Fields

Form fields provide further instructions to agents for constructing a request payload.

A form field can directly identify one or more data items that need to include in the request payload or can reference another resource (such as a schema) that describes the structure of the payload. Form fields may also provide other kinds of information, such as acceptable media types for the payload.

A form field is a pair of a _form field name_ and a _form field value_. The form field name identifies the semantics of the form field. Form field names are denoted like link and form relation types by an IRI. The form field value can either be an IRI, a Boolean value, an integer, a floating-point number, a date/time value, a byte string, or a text string.

3.6. Embedded Representations

When a document contains links to many resources and an agent needs a representation of each link target, it may be inefficient to retrieve each of these representations individually. To alleviate this, documents can directly embed representations of resources.

An _embedded representation_ consists of a sequence of bytes, labeled with _representation metadata_.

An embedded representation may be a full, partial, or inconsistent version of the representation served from the IRI of the resource.

An embedded representation can occur as a top-level element in a document or as a nested element within a link. When it occurs as a top-level element, it provides an alternate representation of the document’s retrieval context. When it occurs nested within a link, it provides a representation of link target of the enclosing link.

3.7. Navigation

An agent begins interacting with an application by performing a GET request on an _entry point IRI_. The entry point IRI is the only IRI an agent is expected to know before interacting with an application. From there, the agent is expected to make all requests by following links and submitting forms provided by the server in responses. The entry point IRI can be obtained by manual configuration or through some discovery process.
If dereferencing the entry point IRI yields a CoRAL document (or any other representation that implements the CoRAL data and interaction model), then the agent makes this document the active representation in the browsing context and proceeds as follows:

1. The first step for the agent is to decide what to do next, i.e., which type of link to follow or form to submit, based on the link and form relation types it understands.

2. The agent then finds the link(s) or form(s) with the respective relation type in the active representation. This may yield one or more candidates, from which the agent will have to select the most appropriate one. The set of candidates may be empty, for example, when a transition is not supported or not allowed.

3. The agent selects one of the candidates based on the metadata associated with each of these. Metadata includes the content type of the target resource representation, the IRI scheme, the request method, and other information that is provided as nested elements in a link or form fields in a form.

 If the selected candidate contains an embedded representation, the agent MAY skip the following steps and immediately proceed with step 8.

4. The agent obtains the _request IRI_ from the link target or submission target. Fragment identifiers are not part of the request IRI and MUST be separated from the rest of the IRI prior to a dereference.

5. The agent constructs a new request with the request IRI. If the agent is following a link, then the request method MUST be GET. If the agent is submitting a form, then the request method MUST be the one specified in the form. The request IRI may need to be converted to a URI (Section 3.1 of RFC 3987) for protocols that do not support IRIs.

 The agent SHOULD set HTTP header fields and CoAP request options according to metadata associated with the link or form (e.g., set the HTTP Accept header field or the CoAP Accept option when the media type of the target resource is provided). In the case of a form with one or more form fields, the agent also MUST include a request payload that matches the specifications of the form fields.

6. The agent sends the request and receives the response.
7. If a fragment identifier was separated from the request IRI, the agent dereferences the fragment identifier within the received representation.

8. The agent _updates the browsing context_ by making the (embedded or received) representation the active representation.

9. Finally, the agent processes the representation according to the semantics of the content type. If the representation is a CoRAL document (or any other representation that implements the CoRAL data and interaction model), this means the agent has the choice of what to do next again -- and the cycle repeats.

3.8. History Traversal

A browsing context MAY entail a _session history_ that lists the resource representations that the agent has processed, is processing, or will process.

An entry in the session history consists of a resource representation and the request IRI that was used to retrieve the representation. New entries are added to the session history as the agent navigates from resource to resource.

An agent can navigate a browsing context by _traversing the session history_ in addition to following links and submitting forms. For example, if an agent received a representation that doesn’t contain any further links or forms, it can revert the active representation back to one it has visited earlier.

Traversing the history should take advantage of caches to avoid new requests. An agent MAY reissue a safe request (e.g., a GET request) if it doesn’t have a fresh representation in its cache. An agent MUST NOT reissue an unsafe request (e.g., a PUT or POST request).

4. Binary Format

This section defines the encoding of documents in the CoRAL binary format.

A document in the binary format is a data item in Concise Binary Object Representation (CBOR) [RFC7049]. The structure of this data item is presented in the Concise Data Definition Language (CDDL) [I-D.ietf-cbor-cddl]. The media type is "application/coral+cbor".
4.1. Data Structure

The data structure of a document in the binary format is made up of four kinds of elements: links, forms, embedded representations, and (as an extension to the CoRAL data model) base directives. Base directives provide a way to encode IRIs with a common base more efficiently.

Elements are processed in the order they appear in the document. Document processors need to maintain an _environment_ while iterating an array of elements. The environment consists of two variables: the _current context_ and the _current base_. Both the current context and the current base are initially set to the document’s retrieval context.

4.1.1. Documents

The body of a document in the binary format is encoded as an array of zero or more links, forms, embedded representations, and directives.

body = [*(link / form / representation / directive)]

4.1.2. Links

A link is encoded as an array that consists of the unsigned integer 2, followed by the link relation type and the link target, optionally followed by a link body that contains nested elements.

link = [link: 2, relation, link-target, ?body]

The link relation type is encoded as a text string that conforms to the syntax of an IRI [RFC3987].

relation = text

The link target is denoted by an IRI reference or represented by a literal value. An IRI reference MUST be resolved against the current base. The encoding of and resolution process for IRI references in the binary format is described in RFC XXXX [I-D.hartke-t2trg-ciri]. The link target may be null, which indicates that the link target is an unidentified resource.

link-target = ciri / literal

ciri = <Defined in Section X of RFC XXXX>

literal = bool / int / float / time / bytes / text / null
The array of elements in the link body, if any, MUST be processed in a fresh environment. Both the current context and the current base in the new environment are initially set to the link target of the enclosing link.

4.1.3. Forms

A form is encoded as an array that consists of the unsigned integer 3, followed by the form relation type, the request method, and the submission target, optionally followed by a list of form fields.

\[
\text{form} = [\text{form: 3, relation, method, submission-target, ?form-fields}]
\]

The form relation type is defined in the same way as a link relation type (Section 4.1.2).

The method MUST refer to one of the request methods defined by the Web transfer protocol identified by the scheme of the submission target. It is encoded either as a text string or an unsigned integer.

\[
\text{method} = \text{text} / \text{uint}
\]

For HTTP [RFC7230], the method MUST be encoded as a text string in the format defined in Section 4.1 of RFC 7231 [RFC7231]; the set of possible values is maintained in the IANA HTTP Method Registry. For CoAP [RFC7252], the method MUST be encoded as an unsigned integer (e.g., the unsigned integer 2 for the POST method); the set of possible values is maintained in the IANA CoAP Method Codes Registry.

The submission target is denoted by an IRI reference. This IRI reference MUST be resolved against the current base.

\[
\text{submission-target} = \text{ciri}
\]

4.1.3.1. Form Fields

A list of form fields is encoded as an array of zero or more name-value pairs.

\[
\text{form-fields} = [\ast(\text{form-field-name, form-field-value})]
\]

The list, if any, MUST be processed in a fresh environment. Both the current context and the current base in the new environment are initially set to the submission target of the enclosing form.
A form field name is defined in the same way as a link relation type (Section 4.1.2).

form-field-name = text

A form field value can be an IRI reference, a Boolean value, an integer, a floating-point number, a date/time value, a byte string, a text string, or null. An IRI reference MUST be resolved against the current base.

form-field-value = ciri / literal

4.1.3.2. Short Forms

[[NOTE TO READERS: This section used to describe special elements for compressing certain forms that were assumed to occur frequently. The topic of encoding frequently occurring elements more efficiently will be revisited when more real-world examples are available.]]

4.1.4. Embedded Representations

An embedded representation is encoded as an array that consists of the unsigned integer 0, followed by the HTTP content type or CoAP content format of the representation and a byte string containing the representation data.

representation = [representation: 0, text / uint, bytes]

For HTTP, the content type MUST be specified as a text string in the format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of possible values is maintained in the IANA Media Types Registry. For CoAP, the content format MUST be specified as an unsigned integer; the set of possible values is maintained in the IANA CoAP Content-Formats Registry.

4.1.5. Directives

Directives provide the ability to manipulate the environment when processing a list of elements. There is one type of directives available: the Base directive.

directive = base-directive

4.1.5.1. Base Directives

A Base directive is encoded as an array that consists of the negative integer -1, followed by a base.
base-directive = [base: -1, base]

The base is denoted by an IRI reference. This IRI reference MUST be resolved against the current context (not the current base).

base = ciri

The directive is processed by resolving the IRI reference against the current context and assigning the result to the current base.

4.2. Dictionaries

The binary format can reference values from a dictionary to reduce representation size and processing cost. Dictionary references can be used in place of link relation types, link targets, form relation types, submission targets, form field names, and form field values.

4.2.1. Dictionary References

A dictionary reference is encoded as an unsigned integer. Where a dictionary reference cannot be expressed unambiguously, the unsigned integer is tagged with CBOR tag TBD6.

relation /= uint

link-target /= #6.TBD6(uint)

submission-target /= #6.TBD6(uint)

form-field-name /= uint

form-field-value /= #6.TBD6(uint)

4.2.2. Media Type Parameter

The "application/coral+cbor" media type is defined to have a "dictionary" parameter that specifies the dictionary in use. The dictionary is identified by a URI [RFC3986]. For example, a CoRAL document that uses the dictionary identified by the URI <http://example.com/dictionary> can use the following content type:

application/coral+cbor; dictionary="http://example.com/dictionary"

The URI serves only as an identifier; it does not necessarily have to be dereferencable (or even use a dereferencable URI scheme). It is permissible, though, to use a dereferencable URI and to serve a representation that provides information about the dictionary in a
human- or machine-readable way. (The format of such a representation is outside the scope of this document.)

For simplicity, a CoRAL document can reference values only from one dictionary; the value of the "dictionary" parameter MUST be a single URI. If the "dictionary" parameter is absent, the default dictionary specified in Appendix B of this document is assumed.

Once a dictionary has made an assignment, the assignment MUST NOT be changed or removed. A dictionary, however, may contain additional information about an assignment, which may change over time.

In CoAP [RFC7252], media types (including specific values for media type parameters) are encoded as an unsigned integer called "content format". For use with CoAP, each new CoRAL dictionary MUST register a new content format in the IANA CoAP Content-Formats Registry.

5. Textual Format

This section defines the syntax of documents in the CoRAL textual format using two grammars: The lexical grammar defines how Unicode characters are combined to form line terminators, white space, comments, and tokens. The syntactic grammar defines how tokens are combined to form documents. Both grammars are presented in Augmented Backus-Naur Form (ABNF) [RFC5234].

A document in the textual format is a Unicode string in a Unicode encoding form [UNICODE]. The media type for such documents is "text/coral". The "charset" parameter is not used; charset information is transported inside the document in the form of an OPTIONAL Byte Order Mark (BOM). The use of the UTF-8 encoding scheme [RFC3629], without a BOM, is RECOMMENDED.

5.1. Lexical Structure

The lexical structure of a document in the textual format is made up of four basic elements: line terminators, white space, comments, and tokens. Of these, only tokens are significant in the syntactic grammar. There are five kinds of tokens: identifiers, IRIs, IRI references, literals, and punctuators.

\[
\text{token} = \text{identifier} / \text{iri} / \text{iriref} / \text{literal} / \text{punctuator}
\]

When several lexical grammar rules match a sequence of characters in a document, the longest match takes priority.
5.1.1. Line Terminators

Line terminators divide text into lines. A line terminator is any Unicode character with Line_Break class BK, CR, LF, or NL. However, any CR character that immediately precedes a LF character is ignored. (This affects only the numbering of lines in error messages.)

5.1.2. White Space

White space is a sequence of one or more white space characters. A white space character is any Unicode character with the White_Space property.

5.1.3. Comments

Comments are sequences of characters that are ignored when parsing text into tokens. Single-line comments begin with the characters "//" and extend to the end of the line. Delimited comments begin with the characters "/*" and end with the characters "*/". Delimited comments can occupy a portion of a line, a single line, or multiple lines.

Comments do not nest. The character sequences "/*" and "*/" have no special meaning within a single-line comment; the character sequences "//" and "/*" have no special meaning within a delimited comment.

5.1.4. Identifiers

An identifier token is a user-defined symbolic name. The rules for identifiers correspond to those recommended by the Unicode Standard Annex #31 [UNICODE-UAX31] using the following profile:

identifier = START *CONTINUE *(MEDIAL 1*CONTINUE)
START = <Any character with the XID_Start property>
CONTINUE = <Any character with the XID_Continue property>
MEDIAL = "-" / "." / "~" / %x58A / %xF0B
MEDIAL =/ %x2010 / %x2027 / %x30A0 / %x30FB

All identifiers MUST be converted into Unicode Normalization Form C (NFC), as defined by the Unicode Standard Annex #15 [UNICODE-UAX15]. Comparison of identifiers is based on NFC and is case-sensitive (unless otherwise noted).
5.1.5. IRIs and IRI References

IRIs and IRI references are Unicode strings that conform to the syntax defined in RFC 3987 [RFC3987]. An IRI reference can be either an IRI or a relative reference. Both IRIs and IRI references are enclosed in angle brackets ("<" and ">").

\[\text{iri} = "<" \text{IRI} ">" \]

\[\text{iriref} = "<" \text{IRI-reference} ">" \]

IRI = <Defined in Section 2.2 of RFC 3987>
IRI-reference = <Defined in Section 2.2 of RFC 3987>

5.1.6. Literals

A literal is a textual representation of a value. There are seven types of literals: Boolean, integer, floating-point, date/time, byte string, text string, and null.

\[\text{literal} = \text{boolean} / \text{integer} / \text{float} / \text{datetime} / \text{bytes} / \text{text} \]

\[\text{literal} = / \text{null} \]

5.1.6.1. Boolean Literals

The case-insensitive tokens "true" and "false" denote the Boolean values true and false, respectively.

\[\text{boolean} = "true" / "false" \]

5.1.6.2. Integer Literals

Integer literals denote an integer value of unspecified precision. By default, integer literals are expressed in decimal, but they can also be specified in an alternate base using a prefix: Binary literals begin with "0b", octal literals begin with "0o", and hexadecimal literals begin with "0x".

Decimal literals contain the digits "0" through "9". Binary literals contain "0" and "1", octal literals contain "0" through "7", and hexadecimal literals contain "0" through "9" as well as "A" through "F" in upper- or lowercase.

Negative integers are expressed by prepending a minus sign ("-").

\[\text{integer} = ["+" / "]" (decimal / binary / octal / hexadecimal) \]
5.1.6.3. Floating-point Literals

Floating-point literals denote a floating-point number of unspecified precision.

Floating-point literals consist of a sequence of decimal digits followed by a fraction, an exponent, or both. The fraction consists of a decimal point ("."), followed by a sequence of decimal digits. The exponent consists of the letter "e" in upper- or lowercase, followed by an optional sign and a sequence of decimal digits that indicate a power of 10 by which the value preceding the "e" is multiplied.

Negative floating-point values are expressed by prepending a minus sign ("-").

```
float = ["+"] 1*DIGIT [fraction] [exponent]
fraction = "." 1*DIGIT
exponent = (%x45 / %x65) ["+"] ["-" ] 1*DIGIT
```

A floating-point literal can additionally denote either the special "Not-a-Number" (NaN) value, positive infinity, or negative infinity. The NaN value is produced by the case-insensitive token "NaN". The two infinite values are produced by the case-insensitive tokens "Infinity" (or simply "Infinity") and "-Infinity".

```
float =/ "NaN"
float =/ ["+"] ["-" ] "Infinity"
```
5.1.6.4. Date/Time Literals

Date/time literals denote an instant in time.

A date/time literal consists of a sequence of characters in Internet
date/time format [RFC3339], enclosed in dollar signs.

\[
\text{datetime} = \text{DOLLAR} \text{ date-time} \text{ DOLLAR}
\]

\[
\text{date-time} = \langle \text{Defined in Section 5.6 of RFC 3339} \rangle
\]

\[
\text{DOLLAR} = \%x24
\]

5.1.6.5. Byte String Literals

Byte string literals denote an ordered sequence of bytes.

A byte string literal consists of a prefix and zero or more bytes
encoded in Base16, Base32, or Base64 [RFC4648] and enclosed in single
quotes. Byte string literals encoded in Base16 begin with "h" or
"b16", byte string literals encoded in Base32 begin with "b32", and
byte string literals encoded in Base64 begin with "b64".

\[
\text{bytes} = \text{base16} / \text{base32} / \text{base64}
\]

\[
\text{base16} = (\%x68 / \%x62.31.36) \text{ SQUOTE} \langle \text{Base16 encoded data} \rangle \text{ SQUOTE}
\]

\[
\text{base32} = \%x62.33.32 \text{ SQUOTE} \langle \text{Base32 encoded data} \rangle \text{ SQUOTE}
\]

\[
\text{base64} = \%x62.36.34 \text{ SQUOTE} \langle \text{Base64 encoded data} \rangle \text{ SQUOTE}
\]

\[
\text{SQUOTE} = \%x27
\]

5.1.6.6. Text String Literals

Text string literals denote a Unicode string.

A text string literal consists of zero or more Unicode characters
encoded in double quotes. It can include simple escape sequences
(such as \t for the tab character) as well as hexadecimal and Unicode
escape sequences.

\[
\text{text} = \text{DQUOTE} \ast (\text{char} / \%x5C \text{ escape}) \text{ DQUOTE}
\]

\[
\text{char} = \langle \text{Any character except \%x22, \%x5C, and line terminators} \rangle
\]

\[
\text{escape} = \text{simple-escape} / \text{hexadecimal-escape} / \text{unicode-escape}
\]
simple-escape = %x30 / %x62 / %x74 / %x6E / %x76
simple-escape =/ %x66 / %x72 / %x22 / %x27 / %x5C
hexadecimal-escape = (%x78 / %x58) 2HEXDIG
unicode-escape = %x75 4HEXDIG / %x55 8HEXDIG
DQUOTE = %x22

An escape sequence denotes a single Unicode code point. For hexadecimal and Unicode escape sequences, the code point is expressed by the hexadecimal number following the "\x", "\X", "\u", or "\U" prefix. Simple escape sequences indicate the code points listed in Table 1.

<table>
<thead>
<tr>
<th>Escape Sequence</th>
<th>Code Point</th>
<th>Character Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\0</td>
<td>U+0000</td>
<td>Null</td>
</tr>
<tr>
<td>\b</td>
<td>U+0008</td>
<td>Backspace</td>
</tr>
<tr>
<td>\t</td>
<td>U+0009</td>
<td>Character Tabulation</td>
</tr>
<tr>
<td>\n</td>
<td>U+000A</td>
<td>Line Feed</td>
</tr>
<tr>
<td>\v</td>
<td>U+000B</td>
<td>Line Tabulation</td>
</tr>
<tr>
<td>\f</td>
<td>U+000C</td>
<td>Form Feed</td>
</tr>
<tr>
<td>\r</td>
<td>U+000D</td>
<td>Carriage Return</td>
</tr>
<tr>
<td>"</td>
<td>U+0022</td>
<td>Quotation Mark</td>
</tr>
<tr>
<td>'</td>
<td>U+0027</td>
<td>Apostrophe</td>
</tr>
<tr>
<td>\</td>
<td>U+005C</td>
<td>Reverse Solidus</td>
</tr>
</tbody>
</table>

Table 1: Simple Escape Sequences

5.1.6.7. Null Literal

The case-insensitive tokens "null" and "_" denote the intentional absence of any value.

null = "null" / "_

5.1.7. Punctuators

Punctuators tokens are used for grouping and separating.

punctuator = "#" / ":" / "*" / "[" / "]" / "{" / "}" / ":=" / ":->"
5.2. Syntactic Structure

The syntactic structure of a document in the textual format is made up of four kinds of elements: links, forms, embedded representations, and (as an extension to the CoRAL data model) directives. Directives provide a way to make documents easier to read and write by setting a base for relative IRI references and introducing shorthands for IRIs.

Elements are processed in the order they appear in the document. Document processors need to maintain an _environment_ while iterating a list of elements. The environment consists of three variables: the _current context_, the _current base_, and the _current mapping from identifiers to IRIs_. Both the current context and the current base are initially set to the document’s retrieval context. The current mapping from identifiers to IRIs is initially empty.

5.2.1. Documents

The body of a document in the textual format consists of zero or more links, forms, embedded representations, and directives.

\[
\text{body} = *(\text{link} / \text{form} / \text{representation} / \text{directive})
\]

5.2.2. Links

A link consists of the link relation type, followed by the link target, optionally followed by a link body enclosed in curly brackets ("{" and "}").

\[
\text{link} = \text{relation} \ \text{link-target} \ ["\{\text{ body }\}]"
\]

The link relation type is denoted by either an IRI, a simple name, or a qualified name.

\[
\text{relation} = \text{iri} / \text{simple-name} / \text{qualified-name}
\]

A simple name consists of an identifier. It is resolved to an IRI by looking up the empty string in the current mapping from identifiers to IRIs and appending the specified identifier to the result. It is an error if the empty string is not present in the current mapping.

\[
\text{simple-name} = \text{identifier}
\]

A qualified name consists of two identifiers separated by a colon (":"). It is resolved to an IRI by looking up the identifier on the left hand side in the current mapping from identifiers to IRIs and appending the identifier on the right hand side to the result. It is
an error if the identifier on the left hand side is not present in
the current mapping.

qualified-name = identifier ":" identifier

The link target is denoted by an IRI reference or represented by a
value literal. An IRI reference MUST be resolved against the current
base. If the link target is null, the link target is an unidentified
resource.

link-target = iriref / literal

The list of elements in the link body, if any, MUST be processed in a
fresh environment. Both the current context and current base in this
environment are initially set to the link target of the enclosing
link. The mapping from identifiers to IRIs is initially set to a
copy of the mapping from identifiers to IRIs in the current
environment.

5.2.3. Forms

A form consists of the form relation type, followed by a "->" token,
the request method, and the submission target, optionally followed by
a list of form fields enclosed in square brackets ("[" and "]").

form = relation "->" method submission-target ["[" form-fields
"]"]

The form relation type is defined in the same way as a link relation
type (Section 5.2.2).

The method identifier MUST refer to one of the request methods
defined by the Web transfer protocol identified by the scheme of the
submission target. Method identifiers are case-insensitive and
constrained to Unicode characters in the Basic Latin block.

method = identifier

For HTTP [RFC7230], the set of possible method identifiers is
maintained in the IANA HTTP Method Registry. For CoAP [RFC7252], the
set of possible method identifiers is maintained in the IANA CoAP
Method Codes Registry.

The submission target is denoted by an IRI reference. This IRI
reference MUST be resolved against the current base.

submission-target = iriref
5.2.3.1. Form Fields

A list of form fields consists of zero or more name-value pairs.

\[\text{form-fields} = *(\text{form-field-name form-field-value}) \]

The list, if any, MUST be processed in a fresh environment. Both the current context and the current base in this environment are initially set to the submission target of the enclosing form. The mapping from identifiers to IRIs is initially set to a copy of the mapping from identifiers to IRIs in the current environment.

The form field name is defined in the same way as a link relation type (Section 5.2.2).

\[\text{form-field-name} = \text{iri} / \text{simple-name} / \text{qualified-name} \]

The form field value can be an IRI reference, Boolean literal, integer literal, floating-point literal, byte string literal, text string literal, or null. An IRI reference MUST be resolved against the current base.

\[\text{form-field-value} = \text{iriref} / \text{literal} \]

5.2.4. Embedded Representations

An embedded representation consists of a "*" token, followed by the representation data, optionally followed by representation metadata enclosed in square brackets ("[" and "]").

\[\text{representation} = "*" \text{bytes} \[\text{representation-metadata}\]\]

Representation metadata consists of zero or more name-value pairs.

\[\text{representation-metadata} = *(\text{metadata-name metadata-value}) \]

This document specifies only one kind of metadata item, labeled with the name "type": the HTTP content type or CoAP content format of the representation.

\[\text{metadata-name} = \text{"type"} \]
\[\text{metadata-value} = \text{text} / \text{integer} \]

For HTTP, the content type MUST be specified as a text string in the format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of possible values is maintained in the IANA Media Types Registry. For CoAP, the content format MUST be specified as an integer; the set of
possible values is maintained in the IANA CoAP Content-Formats Registry.

A metadata item with the name "type" MUST NOT occur more than once. If absent, its value defaults to content type "application/octet-stream" or content format 42.

5.2.5. Directives

Directives provide the ability to manipulate the environment when processing a list of elements. All directives start with a number sign ("#") followed by a directive identifier. Directive identifiers are case-insensitive and constrained to Unicode characters in the Basic Latin block.

The following two types of directives are available: the Base directive and the Using directive.

directive = base-directive / using-directive

5.2.5.1. Base Directives

A Base directive consists of a number sign ("#"), followed by the case-insensitive identifier "base", followed by a base.

base-directive = "#" "base" base

The base is denoted by an IRI reference. The IRI reference MUST be resolved against the current context (not the current base).

base = iriref

The directive is processed by resolving the IRI reference against the current context and assigning the result to the current base.

5.2.5.2. Using Directives

A Using directive consists of a number sign ("#"), followed by the case-insensitive identifier "using", optionally followed by an identifier and an equals sign ("="), finally followed by an IRI. If the identifier is not specified, it is assumed to be the empty string.

using-directive = "#" "using" [identifier "="] iri

The directive is processed by adding the specified identifier and IRI to the current mapping from identifiers to IRIs. It is an error if the identifier is already present in the mapping.
6. Usage Considerations

This section discusses some considerations in creating CoRAL-based applications and managing link and form relation types.

6.1. Specifying CoRAL-based Applications

CoRAL-based applications naturally implement the Web architecture [W3C.REC-webarch-20041215] and thus are centered around orthogonal specifications for identification, interaction, and representation:

- Resources are identified by IRIs or represented by value literals.
- Interactions are based on the hypermedia interaction model of the Web and the methods provided by the Web transfer protocol. The semantics of possible interactions are identified by link and form relation types.
- Representations are CoRAL documents encoded in the binary format defined in Section 4 or the textual format defined in Section 5. Depending on the application, additional representation formats may be used.

6.1.1. Application Interfaces

Specifications for CoRAL-based applications need to list the specific components used in the application interface and their identifiers. This should include the following items:

- IRI schemes that identify the Web transfer protocol(s) used in the application.
- Internet media types that identify the representation format(s) used in the application, including the media type(s) of the CoRAL serialization format(s).
- Link relation types that identify the semantics of links.
- Form relation types that identify the semantics of forms. Additionally, for each form relation type, the permissible request method(s).
- Form field names that identify the semantics of form fields. Additionally, for each form field name, the permissible form field value(s) and/or type(s).
6.1.2. Resource Names

Resource names -- i.e., URIs [RFC3986] and IRIs [RFC3987] -- are a cornerstone of Web-based applications. They enable the uniform identification of resources and are used every time a client interacts with a server or a resource representation needs to refer to another resource.

URIs and IRIs often include structured application data in the path and query components, such as paths in a filesystem or keys in a database. It is a common practice in many HTTP-based application programming interfaces (APIs) to make this part of the application specification, i.e., to prescribe fixed URI templates that are hard-coded in implementations. There are a number of problems with this practice [RFC7320], though.

In CoRAL-based applications, resource names are therefore not part of the application specification -- they are an implementation detail. The specification of a CoRAL-based application MUST NOT mandate any particular form of resource name structure. BCP 190 [RFC7320] describes the problematic practice of fixed URI structures in more detail and provides some acceptable alternatives.

6.1.3. Implementation Limits

This document places no restrictions on the number of elements in a CoRAL document or the depth of nested elements. Applications using CoRAL (in particular those running in constrained environments) may wish to limit these numbers and specify implementation limits that an application implementation must at least support to be interoperable.

Applications may also mandate the following and other restrictions:

- use of only either the binary format or the text format;
- use of only either HTTP or CoAP as supported Web transfer protocol;
- use of only dictionary references in the binary format for certain link relation types, link targets, form relation types, submission targets, form field names, and form field values;
- use of only either content type strings or content format IDs;
- use of IRI references only up to a specific string length;
- use of CBOR in a canonical format (see Section 3.9 of RFC 7049).
6.2. Minting New Relation Types

New link relation types, form relation types, and form field names can be minted by defining an IRI [RFC3987] that uniquely identifies the item. Although the IRI can point to a resource that contains a definition of the semantics of the relation type, clients SHOULD NOT automatically access that resource to avoid overburdening its server. The IRI SHOULD be under the control of the person or party defining it, or be delegated to them.

To avoid interoperability problems, it is RECOMMENDED that only IRIs are minted that are normalized according to Section 5.3 of RFC 3987. Non-normalized forms that are best avoided include:

- Uppercase characters in scheme names and domain names
- Percent-encoding of characters where it is not required by the IRI syntax
- Explicitly stated HTTP default port (e.g., <http://example.com/> is preferable over <http://example.com:80/>)
- Completely empty path in HTTP IRIs (e.g., <http://example.com/> is preferable over <http://example.com>)
- Dot segments ("./." or "/../") in the path component of an IRI
- Lowercase hexadecimal letters within percent-encoding triplets (e.g., "%3F" is preferable over "%3f")
- Punycode-encoding of Internationalized Domain Names in IRIs
- IRIs that are not in Unicode Normalization Form C [UNICODE-UAX15]

IRIs that identify link relation types, form relation types, and form field names do not need to be registered. The inclusion of domain names in IRIs allows for the decentralized creation of new IRIs without the risk of collisions. However, IRIs can be relatively verbose and impose a high overhead on a representation. This can be a problem in constrained environments [RFC7228]. Therefore, CoRAL alternatively allows the use of unsigned integers to reference CBOR data items from a dictionary, as specified in Section 4.2. These impose a much smaller overhead but instead need to be assigned by an authority to avoid collisions.
6.3. Expressing Registered Link Relation Types

Link relation types registered in the IANA Link Relations Registry, such as "collection" [RFC6573] or "icon" [W3C.REC-html52-20171214], can be used in CoRAL by appending the registered name to the IRI <http://www.iana.org/assignments/relation/>:

```
#using iana = <http://www.iana.org/assignments/relation/>

iana:collection </items>
iana:icon       </favicon.png>
```

Note that registered link relation types are required to be lowercased as per Section 3.3 of RFC 8288 [RFC8288].

(The convention of appending the link relation type to the prefix "http://www.iana.org/assignments/relation/" to form an IRI is adopted from Atom [RFC4287]. See also Appendix A.2 of RFC 8288 [RFC8288].)

6.4. Expressing Link Target Attributes

[[NOTE TO READERS: This section describes a mechanism to convert any link target attributes to CoRAL in a way that allows a conversion back without loss of information (round-trip conversion). It is likely that this will be replaced by a specific set of unique link relation types that match the known RFC 6690 attributes semantically but do not round-trip in the presence of unknown attributes.]]

Link target attributes defined for use with CoRE Link Format [RFC6690] (such as "hreflang", "media", "title", "title*", "type", "ct", "rt", "if", "sz", and "obs") can be expressed in CoRAL by nesting links under the respective link. The link relation type of each such nested link is the lowercased attribute name appended to the IRI <http://TBD2/>.

If the expressed link target attribute has a value, the target of the nested link MUST be a text string; otherwise, the target MUST be the Boolean value "true".
Language information in attributes as per RFC 8187 [RFC8187], such as in "title*" attributes, is expressed by nesting an additional link of type <http://TBD2/hreflang> under the link representing the attribute. The target of the nested link MUST be a text string containing a language tag [RFC5646]. The attribute name is expressed without the "*" character.

Link target attributes that actually do not describe the link target but the link itself (such as "rel", "anchor", and "rev") are excluded from this provision and MUST NOT occur in a CoRAL document.

6.5. Expressing Simple RDF Statements

An RDF statement [W3C.REC-rdf11-concepts-20140225] says that some relationship, indicated by a predicate, holds between two resources. RDF predicates can therefore be good source for vocabulary to provide resource metadata. For example, a CoRAL document could use the FOAF vocabulary [FOAF] to describe the person or software that made it:
Internet-Draft Constrained RESTful Application Language February 2019

#using rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
#using foaf = <http://xmlns.com/foaf/0.1/>

foaf:maker null {
 rdf:type <http://xmlns.com/foaf/0.1/Person>
 foaf:familyName "Hartke"
 foaf:givenName "Klaus"
 foaf:mbox <mailto:klaus.hartke@ericsson.com>
}

6.6. Embedding CoRAL in CBOR Structures

Data items in the CoRAL binary format (Section 4) may be embedded in other CBOR [RFC7049] data structures. Specifications using CDDL [I-D.ietf-cbor-cddl] SHOULD reference the following CDDL definitions for this purpose:

 CoRAL-Document = body

 CoRAL-Link = link

 CoRAL-Form = form

7. Security Considerations

Parsers of CoRAL documents must operate on input that is assumed to be untrusted. This means that parsers MUST fail gracefully in the face of malicious inputs. Additionally, parsers MUST be prepared to deal with resource exhaustion (e.g., resulting from the allocation of big data items) or exhaustion of the call stack (stack overflow). See Section 8 of RFC 7049 [RFC7049] for security considerations relating to CBOR.

Implementers of the CoRAL textual format need to consider the security aspects of handling Unicode input. See the Unicode Standard Annex #36 [UNICODE-UAX36] for security considerations relating to visual spoofing and misuse of character encodings. See Section 10 of RFC 3629 [RFC3629] for security considerations relating to UTF-8.

CoRAL makes extensive use of IRIs and URIs. See Section 8 of RFC 3987 [RFC3987] for security considerations relating to IRIs. See Section 7 of RFC 3986 [RFC3986] for security considerations relating to URIs.

The security of applications using CoRAL can depend on the proper preparation and comparison of internationalized strings. For example, such strings can be used to make authentication and authorization decisions, and the security of an application could be
compromised if an entity providing a given string is connected to the wrong account or online resource based on different interpretations of the string. See RFC 6943 [RFC6943] for security considerations relating to identifiers in IRIs and other places.

CoRAL is intended to be used in conjunction with a Web transfer protocol like HTTP or CoAP. See Section 9 of RFC 7230 [RFC7230], Section 9 of RFC 7231 [RFC7231], etc., for security considerations relating to HTTP. See Section 11 of RFC 7252 [RFC7252] for security considerations relating to CoAP.

CoRAL does not define any specific mechanisms for protecting the confidentiality and integrity of CoRAL documents. It relies on application layer or transport layer mechanisms for this, such as Transport Layer Security (TLS) [RFC8446].

CoRAL documents and the structure of a web of resources revealed from automatically following links can disclose personal information and other sensitive information. Implementations need to prevent the unintentional disclosure of such information. See Section 9 of RFC 7231 [RFC7231] for additional considerations.

Applications using CoRAL ought to consider the attack vectors opened by automatically following, trusting, or otherwise using links and forms in CoRAL documents. Notably, a server that is authoritative for the CoRAL representation of a resource may not necessarily be authoritative for nested elements in the document. See Section 5 of RFC 8288 [RFC8288] for related considerations.

Unless an application mitigates this risk by specifying more specific rules, any link or form in a document where the link or form context and the document’s retrieval context don’t share the same Web origin [RFC6454] MUST be discarded ("same-origin policy").

8. IANA Considerations

8.1. Media Type "application/coral+cbor"

This document registers the media type "application/coral+cbor" according to the procedures of BCP 13 [RFC6838].

Type name: application

Subtype name: coral+cbor

Required parameters:
N/A

Optional parameters:
 dictionary - See Section 4.2 of [I-D.hartke-t2trg-coral].

Encoding considerations:
 binary - See Section 4 of [I-D.hartke-t2trg-coral].

Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

Interoperability considerations:
 N/A

Published specification:
 [I-D.hartke-t2trg-coral]

Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

Fragment identifier considerations:
 As specified for "application/cbor".

Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .coral.cbor
 Macintosh file type code(s): N/A

Person & email address to contact for further information:
 See the Author’s Address section of [I-D.hartke-t2trg-coral].

Intended usage:
 COMMON

Restrictions on usage:
 N/A

Author:
 See the Author’s Address section of [I-D.hartke-t2trg-coral].

Change controller:
 IESG

Provisional registration?
 No
8.2. Media Type "text/coral"

This document registers the media type "text/coral" according to the procedures of BCP 13 [RFC6838] and guidelines in RFC 6657 [RFC6657].

Type name:
 text

Subtype name:
 coral

Required parameters:
 N/A

Optional parameters:
 N/A

Encoding considerations:
 binary - See Section 5 of [I-D.hartke-t2trg-coral].

Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

Interoperability considerations:
 N/A

Published specification:
 [I-D.hartke-t2trg-coral]

Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

Fragment identifier considerations:
 N/A

Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .coral
 Macintosh file type code(s): N/A

Person & email address to contact for further information:
 See the Author’s Address section of [I-D.hartke-t2trg-coral].

Intended usage:
 COMMON

Restrictions on usage:
8.3. CoAP Content Formats

This document registers CoAP content formats for the content types "application/coral+cbor" and "text/coral" according to the procedures of RFC 7252 [RFC7252].

- Content Type: application/coral+cbor
 - Content Coding: identity
 - ID: TBD3
 - Reference: [I-D.hartke-t2trg-coral]

- Content Type: text/coral
 - Content Coding: identity
 - ID: TBD4
 - Reference: [I-D.hartke-t2trg-coral]

[[NOTE TO RFC EDITOR: Please replace all occurrences of "TBD3" and "TBD4" in this document with the code points assigned by IANA.]]

[[NOTE TO IMPLEMENTERS: Experimental implementations can use content format ID 65087 for "application/coral+cbor" and content format ID 65343 for "text/coral" until IANA has assigned code points.]]

8.4. CBOR Tag

This document registers a CBOR tag for dictionary references according to the procedures of RFC 7049 [RFC7049].

- Tag: TBD6
 - Data Item: unsigned integer
 - Semantics: Dictionary reference
 - Reference: [I-D.hartke-t2trg-coral]

[[NOTE TO RFC EDITOR: Please replace all occurrences of "TBD6" in this document with the code point assigned by IANA.]]
9. References

9.1. Normative References

[I-D.hartke-t2trg-ciri]

[I-D.ietf-cbor-cddl]

[RFC2119]

[RFC3339]

[RFC3629]

[RFC3986]

[RFC3987]

[RFC4648]

[RFC5234]

Note that this reference is to the latest version of Unicode, rather than to a specific release. It is not expected that future changes in the Unicode specification will have any impact on this document.

9.2. Informative References

Hartke Expires August 10, 2019 [Page 37]
Appendix A. Core Vocabulary

This section defines the core vocabulary for CoRAL: a set of link relation types, form relation types, and form field names.

[[NOTE TO RFC EDITOR: Please replace all occurrences of "urn:TBD1" in this document with an IETF-controlled IRI, such as "urn:ietf:..." or "http://...ietf.org/...".]]

A.1. Link Relation Types

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Indicates that the link’s context is an instance of the class specified as the link’s target, as defined by RDF Schema [W3C.REC-rdf-schema-20140225].

<http://www.iana.org/assignments/relation/item>
Indicates that the link’s context is a collection and that the link’s target is a member of that collection, as defined in Section 2.1 of RFC 6573 [RFC6573].

<http://www.iana.org/assignments/relation/collection>
Indicates that the link’s target is a collection and that the link’s context is a member of that collection, as defined in Section 2.2 of RFC 6573 [RFC6573].

A.2. Form Relation Types

<urn:TBD1#create>
Indicates that the form’s context is a collection and that a new item can be created in that collection by submitting a suitable representation. This form relation type is typically used with the POST method [RFC7231] [RFC7252].

<urn:TBD1#update>
Indicates that the form’s context can be updated by submitting a suitable representation. This form relation type is typically used with the PUT method [RFC7231] [RFC7252], PATCH method [RFC5789] [RFC8132], or iPATCH method [RFC8132].

<urn:TBD1#delete>
Indicates that the form’s context can be deleted. This form relation type is typically used with the DELETE method [RFC7231] [RFC7252].

<urn:TBD1#search>
Indicates that the form’s context can be searched by submitting a search query. This form relation type is typically used with the POST method [RFC7231] [RFC7252] or FETCH method [RFC8132].

A.3. Form Field Names

<urn:TBD1#accept>
Specifies an acceptable HTTP content type or CoAP content format for the request payload. There may be multiple form fields with this name. If a form does not include a form field with this name, the server accepts any or no request payload, depending on the form relation type.

For HTTP, the content type MUST be specified as a text string in the format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of possible values is maintained in the IANA Media Types Registry. For CoAP, the content format MUST be specified as an unsigned integer; the set of possible values is maintained in the IANA CoAP Content-Formats Registry.

Appendix B. Default Dictionary

This section defines a default dictionary that is assumed when the "application/coral+cbor" media type is used without a "dictionary" parameter.

0 = <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
1 = <http://www.iana.org/assignments/relation/item>
2 = <http://www.iana.org/assignments/relation/collection>
3 = <urn:TBD1#create>
4 = <urn:TBD1#update>
5 = <urn:TBD1#delete>
6 = <urn:TBD1#search>
7 = <urn:TBD1#accept>
Acknowledgements

Thanks to Christian Amsuess for helpful comments and discussions that have shaped the document.

Author’s Address

Klaus Hartke
Ericsson
Torshammsgatan 23
Stockholm SE-16483
Sweden

Email: klaus.hartke@ericsson.com
State-of-the-Art and Challenges for the Internet of Things Security

draft-irtf-t2trg-iot-secons-16

Abstract

The Internet of Things (IoT) concept refers to the usage of standard Internet protocols to allow for human-to-thing and thing-to-thing communication. The security needs for IoT systems are well-recognized and many standardization steps to provide security have been taken, for example, the specification of Constrained Application Protocol (CoAP) secured with Datagram Transport Layer Security (DTLS). However, security challenges still exist, not only because there are some use cases that lack a suitable solution, but also because many IoT devices and systems have been designed and deployed with very limited security capabilities. In this document, we first discuss the various stages in the lifecycle of a thing. Next, we document the security threats to a thing and the challenges that one might face to protect against these threats. Lastly, we discuss the next steps needed to facilitate the deployment of secure IoT systems. This document can be used by implementors and authors of IoT specifications as a reference for details about security considerations while documenting their specific security challenges, threat models, and mitigations.

This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 16, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. The Thing Lifecycle ... 4
3. Security Threats and Managing Risk 7
4. State-of-the-Art ... 11
 4.1. IP-based IoT Protocols and Standards 11
 4.2. Existing IP-based Security Protocols and Solutions ... 14
 4.3. IoT Security Guidelines 16
5. Challenges for a Secure IoT 19
 5.1. Constraints and Heterogeneous Communication 19
 5.1.1. Resource Constraints 19
 5.1.2. Denial-of-Service Resistance 20
 5.1.3. End-to-end security, protocol translation, and the role of middleboxes 21
 5.1.4. New network architectures and paradigm 23
 5.2. Bootstrapping of a Security Domain 23
 5.3. Operational Challenges 24
 5.3.1. Group Membership and Security 24
 5.3.2. Mobility and IP Network Dynamics 25
 5.4. Secure software update and cryptographic agility 26
 5.5. End-of-Life ... 28
 5.6. Verifying device behavior 28
 5.7. Testing: bug hunting and vulnerabilities 29
 5.8. Quantum-resistance 30
 5.9. Privacy protection 31
 5.10. Reverse engineering considerations 32
 5.11. Trustworthy IoT Operation 33
The Internet of Things (IoT) denotes the interconnection of highly heterogeneous networked entities and networks that follow a number of different communication patterns such as: human-to-human (H2H), human-to-thing (H2T), thing-to-thing (T2T), or thing-to-things (T2Ts). The term IoT was first coined by the Auto-ID center [AUTO-ID] in 1999 which had envisioned a world where every physical object is tagged with a radio-frequency identification (RFID) tag having a globally unique identifier. This would not only allow tracking of objects in real-time but also allow querying of data about them over the Internet. However, since then, the meaning of the Internet of Things has expanded and now encompasses a wide variety of technologies, objects and protocols. It is not surprising that the IoT has received significant attention from the research community to (re)design, apply, and use standard Internet technology and protocols for the IoT.

The things that are part of the Internet of Things are computing devices that understand and react to the environment they reside in. These things are also often referred to as smart objects or smart devices. The introduction of IPv6 [RFC6568] and CoAP [RFC7252] as fundamental building blocks for IoT applications allows connecting IoT hosts to the Internet. This brings several advantages including: (i) a homogeneous protocol ecosystem that allows simple integration with other Internet hosts; (ii) simplified development for devices that significantly vary in their capabilities; (iii) a unified interface for applications, removing the need for application-level proxies. These building blocks greatly simplify the deployment of the envisioned scenarios which range from building automation to production environments and personal area networks.

This document presents an overview of important security aspects for the Internet of Things. We begin by discussing the lifecycle of a thing in Section 2. In Section 3, we discuss security threats for the IoT and methodologies for managing these threats when designing a secure system. Section 4 reviews existing IP-based (security) protocols for the IoT and briefly summarizes existing guidelines and regulations. Section 5 identifies remaining challenges for a secure IoT and discusses potential solutions. Section 6 includes final remarks and conclusions. This document can be used by IoT standards
specifications as a reference for details about security considerations applying to the specified system or protocol.

The first draft version of this document was submitted in March 2011. Initial draft versions of this document were presented and discussed during the CORE meetings at IETF 80 and later. Discussions on security lifecycle at IETF 92 (March 2015) evolved into more general security considerations. Thus, the draft was selected to address the T2TRG work item on the security considerations and challenges for the Internet of Things. Further updates of the draft were presented and discussed during the T2TRG meetings at IETF 96 (July 2016) and IETF 97 (November 2016) and at the joint interim in Amsterdam (March 2017). This document has been reviewed by, commented on, and discussed extensively for a period of nearly six years by a vast majority of T2TRG and related group members; the number of which certainly exceeds 100 individuals. It is the consensus of T2TRG that the security considerations described in this document should be published in the IRTF Stream of the RFC series. This document does not constitute a standard.

2. The Thing Lifecycle

The lifecycle of a thing refers to the operational phases of a thing in the context of a given application or use case. Figure 1 shows the generic phases of the lifecycle of a thing. This generic lifecycle is applicable to very different IoT applications and scenarios. For instance, [RFC7744] provides an overview of relevant IoT use cases.

In this document, we consider a Building Automation and Control (BAC) system to illustrate the lifecycle and the meaning of these different phases. A BAC system consists of a network of interconnected nodes that performs various functions in the domains of HVAC (Heating, Ventilating, and Air Conditioning), lighting, safety, etc. The nodes vary in functionality and a large majority of them represent resource-constrained devices such as sensors and luminaries. Some devices may be battery operated or may rely on energy harvesting. This requires us to also consider devices that sleep during their operation to save energy. In our BAC scenario, the life of a thing starts when it is manufactured. Due to the different application areas (i.e., HVAC, lighting, or safety) nodes/things are tailored to a specific task. It is therefore unlikely that one single manufacturer will create all nodes in a building. Hence, interoperability as well as trust bootstrapping between nodes of different vendors is important.

The thing is later installed and commissioned within a network by an installer during the bootstrapping phase. Specifically, the device
identity and the secret keys used during normal operation may be provided to the device during this phase. Different subcontractors may install different IoT devices for different purposes. Furthermore, the installation and bootstrapping procedures may not be a discrete event and may stretch over an extended period. After being bootstrapped, the device and the system of things are in operational mode and execute the functions of the BAC system. During this operational phase, the device is under the control of the system owner and used by multiple system users. For devices with lifetimes spanning several years, occasional maintenance cycles may be required. During each maintenance phase, the software on the device can be upgraded or applications running on the device can be reconfigured. The maintenance tasks can be performed either locally or from a backend system. Depending on the operational changes to the device, it may be required to re-bootstrap at the end of a maintenance cycle. The device continues to loop through the operational phase and the eventual maintenance phases until the device is decommissioned at the end of its lifecycle. However, the end-of-life of a device does not necessarily mean that it is defective and rather denotes a need to replace and upgrade the network to the next-generation devices for additional functionality. Therefore, the device can be removed and re-commissioned to be used in a different system under a different owner thereby starting the lifecycle all over again.

We note that the presented lifecycle represents to some extent a simplified model. For instance, it is possible to argue that the lifecycle does not start when a tangible device is manufactured but rather when the oldest bit of code that ends up in the device - maybe from an open source project or from the used operating system - was written. Similarly, the lifecycle could also include an on-the-shelf phase where the device is in the supply-chain before an owner/user purchases and installs it. Another phase could involve the device being re-badged by some vendor who is not the original manufacturer. Such phases can significantly complicate other phases such as maintenance and bootstrapping. Finally, other potential end-states can be, e.g., a vendor that no longer supports a device type because it is at end-of-life or a situation in which a device is simply forgotten but remains functional.
Security is a key requirement in any communication system. However, security is an even more critical requirement in real-world IoT deployments for several reasons. First, compromised IoT systems can not only endanger the privacy and security of a user, but can also cause physical harm. This is because IoT systems often comprise sensors, actuators and other connected devices in the physical environment of the user which could adversely affect the user if they are compromised. Second, a vulnerable IoT system means that an attacker can alter the functionality of a device from a given manufacturer. This not only affects the manufacturer’s brand image, but can also leak information that is very valuable for the manufacturer (such as proprietary algorithms). Third, the impact of attacking an IoT system goes beyond a specific device or an isolated system since compromised IoT systems can be misused at scale. For example, they may be used to perform a Distributed Denial of Service (DDoS) attack that limits the availability of other networks and services. The fact that many IoT systems rely on standard IP protocols allows for easier system integration, but this also makes attacks on standard IP protocols widely applicable in other environments. This results in new requirements regarding the implementation of security.

The term security subsumes a wide range of primitives, protocols, and procedures. For instance, the term security includes services such as confidentiality, authentication, integrity, authorization, source authentication, and availability. The term security often also includes augmented services such as duplicate detection and detection of stale packets (timeliness). These security services can be implemented through a combination of cryptographic mechanisms such as block ciphers, hash functions, and signature algorithms; as well as
non-cryptographic mechanisms that implement authorization and other
security policy enforcement aspects. For ensuring security in IoT
networks, one should not only focus on the required security
services, but also pay special attention to how the services are
realized in the overall system.

3. Security Threats and Managing Risk

Security threats in related IP protocols have been analyzed in
multiple documents including Hypertext Transfer Protocol (HTTP) over
Transport Layer Security (TLS) (HTTPS) [RFC2818], Constrained
Application Protocol (COAP) [RFC7252], IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN) [RFC4919], Access Node Control
Protocol (ANCP) [RFC5713], Domain Name System (DNS) [RFC3833], IPv6
Neighbor Discovery (ND) [RFC3756], and Protocol for Carrying
Authentication and Network Access (PANA) [RFC4016]. In this section,
we specifically discuss the threats that could compromise an
individual thing or the network as a whole. Some of these threats
might go beyond the scope of Internet protocols but we gather them
here for the sake of completeness. The threats in the following list
are not in any particular order and some threats might be more
critical than others depending on the deployment scenario under
consideration:

1. Vulnerable Software/Code: Things in the Internet of Things rely
on software that might contain severe bugs and/or bad design
choices. This makes the things vulnerable to many different
types of attacks, depending on the criticality of the bugs,
e.g., buffer overflows or lack of authentication. This can be
considered as one of the most important security threat. The
large-scale distributed denial-of-service (DDoS) attack,
popularly known as the Mirai botnet [mirai], was caused by
things that had well-known or easy-to-guess passwords for
configuration.

2. Privacy threat: The tracking of a thing’s location and usage may
pose a privacy risk to people around it. For instance, an
attacker can infer privacy sensitive information from the data
gathered and communicated by individual things. Such
information may subsequently be sold to interested parties for
marketing purposes and targeted advertising. In extreme cases,
such information might be used to track dissidents in oppressive
regimes. Unlawful surveillance and interception of traffic to/
from a thing by intelligence agencies is also a privacy threat.

3. Cloning of things: During the manufacturing process of a thing,
an untrusted factory can easily clone the physical
characteristics, firmware/software, or security configuration of
Deployed things might also be compromised and their software reverse engineered allowing for cloning or software modifications. Such a cloned thing may be sold at a cheaper price in the market, and yet can function normally as a genuine thing. For example, two cloned devices can still be associated and work with each other. In the worst-case scenario, a cloned device can be used to control a genuine device or perform an attack. One should note here, that an untrusted factory may also change functionality of the cloned thing, resulting in degraded functionality with respect to the genuine thing (thereby, inflicting potential damage to the reputation of the original thing manufacturer). Moreover, additional functionality can be introduced in the cloned thing. An example of such functionality is a backdoor.

4. Malicious substitution of things: During the installation of a thing, a genuine thing may be substituted with a similar variant (of lower quality) without being detected. The main motivation may be cost savings, where the installation of lower-quality things (for example, non-certified products) may significantly reduce the installation and operational costs. The installers can subsequently resell the genuine things to gain further financial benefits. Another motivation may be to inflict damage to the reputation of a competitor’s offerings.

5. Eavesdropping attack: During the commissioning of a thing into a network, it may be susceptible to eavesdropping, especially if operational keying materials, security parameters, or configuration settings, are exchanged in clear using a wireless medium or if used cryptographic algorithms are not suitable for the envisioned lifetime of the device and the system. After obtaining the keying material, the attacker might be able to recover the secret keys established between the communicating entities, thereby compromising the authenticity and confidentiality of the communication channel, as well as the authenticity of commands and other traffic exchanged over this communication channel. When the network is in operation, T2T communication can be eavesdropped if the communication channel is not sufficiently protected or if a session key is compromised due to protocol weaknesses. An adversary may also be able to eavesdrop if keys are not renewed or updated appropriately. Lastly, messages can also be recorded and decrypted offline at a later point of time. The Venona project [venona-project] is one such example where messages were recorded for offline decryption.

6. Man-in-the-middle attack: Both the commissioning phase and operational phases may also be vulnerable to man-in-the-middle
attacks. For example, when keying material between communicating entities is exchanged in the clear and the security of the key establishment protocol depends on the tacit assumption that no third party can eavesdrop during the execution of this protocol. Additionally, device authentication or device authorization may be non-trivial, or may need support of a human decision process, since things usually do not have a-priori knowledge about each other and cannot always differentiate friends and foes via completely automated mechanisms.

7. Firmware attacks: When a thing is in operation or maintenance phase, its firmware or software may be updated to allow for new functionality or new features. An attacker may be able to exploit such a firmware upgrade by maliciously replacing the thing’s firmware, thereby influencing its operational behavior. For example, an attacker could add a piece of malicious code to the firmware that will cause it to periodically report the energy usage of the thing to a data repository for analysis. The attacker can then use this information to determine when a home or enterprise (where the thing is installed) is unoccupied and break in. Similarly, devices whose software has not been properly maintained and updated might contain vulnerabilities that might be exploited by attackers to replace the firmware on the device.

8. Extraction of private information: IoT devices (such as sensors, actuators, etc.) are often physically unprotected in their ambient environment and they could easily be captured by an attacker. An attacker with physical access may then attempt to extract private information such as keys (for example, device’s key, private-key, group key), sensed data (for example, healthcare status of a user), configuration parameters (for example, the Wi-Fi key), or proprietary algorithms (for example, algorithm performing some data analytics task). Even when the data originating from a thing is encrypted, attackers can perform traffic analysis to deduce meaningful information which might compromise the privacy of the thing’s owner and/or user.

9. Routing attack: As highlighted in [ID-Daniel], routing information in IoT networks can be spoofed, altered, or replayed, in order to create routing loops, attract/repel network traffic, extend/shorten source routes, etc. A non-exhaustive list of routing attacks includes 1) Sinkhole attack (or blackhole attack), where an attacker declares himself to have a high-quality route/path to the base station, thus allowing him to do manipulate all packets passing through it. 2) Selective forwarding, where an attacker may selectively forward
packets or simply drop a packet. 3) Wormhole attack, where an attacker may record packets at one location in the network and tunnel them to another location, thereby influencing perceived network behavior and potentially distorting statistics, thus greatly impacting the functionality of routing. 4) Sybil attack, whereby an attacker presents multiple identities to other things in the network. We refer to [ID-Daniel] for further router attacks and a more detailed description.

10. Elevation of privilege: An attacker with low privileges can misuse additional flaws in the implemented authentication and authorization mechanisms of a thing to gain more privileged access to the thing and its data.

11. Denial-of-Service (DoS) attack: Often things have very limited memory and computation capabilities. Therefore, they are vulnerable to resource exhaustion attack. Attackers can continuously send requests to specific things so as to deplete their resources. This is especially dangerous in the Internet of Things since an attacker might be located in the backend and target resource-constrained devices that are part of a constrained node network [RFC7228]. DoS attack can also be launched by physically jamming the communication channel. Network availability can also be disrupted by flooding the network with a large number of packets. On the other hand, things compromised by attackers can be used to disrupt the operation of other networks or systems by means of a Distributed DoS (DDoS) attack.

To deal with above threats it is required to find and apply suitable security mitigations. However, new threats and exploits appear on a daily basis and products are deployed in different environments prone to different types of threats. Thus, ensuring a proper level of security in an IoT system at any point of time is challenging. To address this challenge, some of the following methodologies can be used:

1. A Business Impact Analysis (BIA) assesses the consequences of the loss of basic security attributes: confidentiality, integrity and availability in an IoT system. These consequences might include the impact from lost data, reduced sales, increased expenses, regulatory fines, customer dissatisfaction, etc. Performing a business impact analysis allows a business to determine the relevance of having a proper security design.

2. A Risk Assessment (RA) analyzes security threats to an IoT system while considering their likelihood and impact. It also includes categorizing each of them with a risk level. Risks classified as
moderate or high must be mitigated, i.e., the security architecture should be able to deal with those threat.

3. A privacy impact assessment (PIA) aims at assessing the Personally Identifiable Information (PII) that is collected, processed, or used in an IoT system. By doing so, the goal is to fulfill applicable legal requirements, determine risks and effects of manipulation and loss of PII.

4. Procedures for incident reporting and mitigation refer to the methodologies that allow becoming aware of any security issues that affect an IoT system. Furthermore, this includes steps towards the actual deployment of patches that mitigate the identified vulnerabilities.

BIA, RA, and PIA should generally be realized during the creation of a new IoT system or when deploying significant system/feature upgrades. In general, it is recommended to re-assess them on a regular basis taking into account new use cases and/or threats. The way a BIA, RA, PIA are performed depends on the environment and the industry. More information can be found in NIST documents such as [NISTSP800-34r1], [NISTSP800-30r1], and [NISTSP800-122].

4. State-of-the-Art

This section is organized as follows. Section 4.1 summarizes state-of-the-art on IP-based IoT systems, within IETF and in other standardization bodies. Section 4.2 summarizes state-of-the-art on IP-based security protocols and their usage. Section 4.3 discusses guidelines and regulations for securing IoT as proposed by other bodies. Note that the references included in this section are a representative of the state-of-the-art at the point of writing and they are by no means exhaustive. The references are also at varying levels of maturity, and thus, it is advisable to review their specific status.

4.1. IP-based IoT Protocols and Standards

Nowadays, there exists a multitude of control protocols for IoT. For BAC systems, the ZigBee standard [ZB], BACNet [BACNET], and DALI [DALI] play key roles. Recent trends, however, focus on an all-IP approach for system control.

In this setting, a number of IETF working groups are designing new protocols for resource-constrained networks of smart things. The 6LoWPAN working group [WG-6LoWPAN] for example has defined methods and protocols for the efficient transmission and adaptation of IPv6 packets over IEEE 802.15.4 networks [RFC4944].
The CoRE working group [WG-CoRE] has specified the Constrained Application Protocol (CoAP) [RFC7252]. CoAP is a RESTful protocol for constrained devices that is modeled after HTTP and typically runs over UDP to enable efficient application-level communication for things.

In many smart object networks, the smart objects are dispersed and have intermittent reachability either because of network outages or because they sleep during their operational phase to save energy. In such scenarios, direct discovery of resources hosted on the constrained server might not be possible. To overcome this barrier, the CoRE working group is specifying the concept of a Resource Directory (RD) [ID-rd]. The Resource Directory hosts descriptions of resources which are located on other nodes. These resource descriptions are specified as CoRE link format [RFC6690].

While CoAP defines a standard communication protocol, a format for representing sensor measurements and parameters over CoAP is required. The Sensor Measurement Lists (SenML) [RFC8428] is a specification that defines media types for simple sensor measurements and parameters. It has a minimalistic design so that constrained devices with limited computational capabilities can easily encode their measurements and, at the same time, servers can efficiently collect large number of measurements.

In many IoT deployments, the resource-constrained smart objects are connected to the Internet via a gateway that is directly reachable. For example, an IEEE 802.11 Access Point (AP) typically connects the client devices to the Internet over just one wireless hop. However, some deployments of smart object networks require routing between the smart objects themselves. The IETF has therefore defined the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [RFC6550]. RPL provides support for multipoint-to-point traffic from resource-constrained smart objects towards a more resourceful central control point, as well as point-to-multipoint traffic in the reverse direction. It also supports point-to-point traffic between the resource-constrained devices. A set of routing metrics and constraints for path calculation in RPL are also specified [RFC6551].

The IPv6 over Networks of Resource-constrained Nodes (6lo) [WG-6lo] working group of the IETF has specified how IPv6 packets can be transmitted over various link layer protocols that are commonly employed for resource-constrained smart object networks. There is also ongoing work to specify IPv6 connectivity for a Non-Broadcast Multi-Access (NBMA) mesh network that is formed by IEEE 802.15.4 TimeSlotted Channel Hopping (TSCH) links [ID-6tisch]. Other link layer protocols for which IETF has specified or is currently specifying IPv6 support include Bluetooth [RFC7668], Digital Enhanced
Cordless Telecommunications (DECT) Ultra Low Energy (ULE) air interface [RFC8105], and Near Field Communication (NFC) [ID-6lonfc].

Baker and Meyer [RFC6272] identify which IP protocols can be used in smart grid environments. They give advice to smart grid network designers on how they can decide on a profile of the Internet protocol suite for smart grid networks.

The Low Power Wide-Area Network (LPWAN) working [WG-LPWAN] group is analyzing features, requirements, and solutions to adapt IP-based protocols to networks such as LORA [lora], SigFox [sigfox], NB-IoT [nbiot], etc. These networking technologies enable a smart thing to run for years on a single coin-cell by relying on a star network topology and using optimized radio modulation with frame sizes in the order of tens of bytes. Such networks bring new security challenges since most existing security mechanisms do not work well with such resource constraints.

JavaScript Object Notation (JSON) is a lightweight text representation format for structured data [RFC8259]. It is often used for transmitting serialized structured data over the network. IETF has defined specifications for encoding cryptographic keys, encrypted content, signed content, and claims to be transferred between two parties as JSON objects. They are referred to as JSON Web Keys (JWK) [RFC7517], JSON Web Encryption (JWE) [RFC7516], JSON Web Signatures (JWS) [RFC7515] and JSON Web Token (JWT) [RFC7519].

An alternative to JSON, Concise Binary Object Representation (CBOR) [RFC7049] is a concise binary data format that is used for serialization of structured data. It is designed for resource-constrained nodes and therefore it aims to provide a fairly small message size with minimal implementation code, and extensibility without the need for version negotiation. CBOR Object Signing and Encryption (COSE) [RFC8152] specifies how to encode cryptographic keys, message authentication codes, encrypted content, and signatures with CBOR.

The Light-Weight Implementation Guidance (LWIG) working group [WG-LWIG] is collecting experiences from implementers of IP stacks in constrained devices. The working group has already produced documents such as RFC7815 [RFC7815] which defines how a minimal Internet Key Exchange Version 2 (IKEv2) initiator can be implemented.

The Thing-2-Thing Research Group (T2TRG) [RG-T2TRG] is investigating the remaining research issues that need to be addressed to quickly turn the vision of IoT into a reality where resource-constrained nodes can communicate with each other and with other more capable nodes on the Internet.
Additionally, industry alliances and other standardization bodies are creating constrained IP protocol stacks based on the IETF work. Some important examples of this include:

1. Thread [Thread]: Specifies the Thread protocol that is intended for a variety of IoT devices. It is an IPv6-based network protocol that runs over IEEE 802.15.4.

2. Industrial Internet Consortium [IIoT]: The consortium defines reference architectures and security frameworks for development, adoption and widespread use of Industrial Internet technologies based on existing IETF standards.

3. Internet Protocol for Smart Objects IPSO [IPSO]: The alliance specifies a common object model that enables application software on any device to interoperate with other conforming devices.

4. OneM2M [OneM2M]: The standards body defines technical and API specifications for IoT devices. It aims to create a service layer that can run on any IoT device hardware and software.

5. Open Connectivity Foundation (OCF) [OCF]: The foundation develops standards and certifications primarily for IoT devices that use Constrained Application Protocol (CoAP) as the application layer protocol.

6. Fairhair Alliance [Fairhair]: Specifies an IoT middleware to enable a common IP network infrastructure between different application standards used in building automation and lighting systems such as BACnet, KNX and ZigBee.

7. OMA LWM2M [LWM2M]: OMA Lightweight M2M is a standard from the Open Mobile Alliance for M2M and IoT device management. LWM2M relies on CoAP as the application layer protocol and uses a RESTful architecture for remote management of IoT devices.

4.2. Existing IP-based Security Protocols and Solutions

There are three main security objectives for IoT networks: 1. protecting the IoT network from attackers. 2. protecting IoT applications and thus, the things and users. 3. protecting the rest of the Internet and other things from attacks that use compromised things as an attack platform.

In the context of the IP-based IoT deployments, consideration of existing Internet security protocols is important. There are a wide range of specialized as well as general-purpose security solutions for the Internet domain such as IKEv2/IPsec [RFC7296], Transport
Layer Security (TLS) [RFC8446], Datagram Transport Layer Security (DTLS) [RFC6347], Host Identity Protocol (HIP) [RFC7401], PANA [RFC5191], Kerberos ([RFC4120]), Simple Authentication and Security Layer (SASL) [RFC4422], and Extensible Authentication Protocol (EAP) [RFC3748].

TLS provides security for TCP and requires a reliable transport. DTLS secures and uses datagram-oriented protocols such as UDP. Both protocols are intentionally kept similar and share the same ideology and cipher suites. The CoAP base specification [RFC7252] provides a description of how DTLS can be used for securing CoAP. It proposes three different modes for using DTLS: the PreSharedKey mode, where nodes have pre-provisioned keys for initiating a DTLS session with another node, RawPublicKey mode, where nodes have asymmetric-key pairs but no certificates to verify the ownership, and Certificate mode, where public keys are certified by a certification authority. An IoT implementation profile [RFC7925] is defined for TLS version 1.2 and DTLS version 1.2 that offers communication security for resource-constrained nodes.

There is ongoing work to define an authorization and access-control framework for resource-constrained nodes. The Authentication and Authorization for Constrained Environments (ACE) [WG-ACE] working group is defining a solution to allow only authorized access to resources that are hosted on a smart object server and are identified by a URI. The current proposal [ID-aceoauth] is based on the OAuth 2.0 framework [RFC6749] and it comes with profiles intended for different communication scenarios, e.g. DTLS Profile for Authentication and Authorization for Constrained Environments [ID-acedtls].

OSCORE [ID-OSCORE] is a proposal that protects CoAP messages by wrapping them in the CBOR Object Signing and Encryption (COSE) [RFC8152] format. Thus, OSCORE falls in the category of object security and it can be applied wherever CoAP can be used. The advantage of OSCORE over DTLS is that it provides some more flexibility when dealing with end-to-end security. Section 5.1.3 discusses this further.

The Automated Certificate Management Environment (ACME) [WG-ACME] working group is specifying conventions for automated X.509 certificate management. This includes automatic validation of certificate issuance, certificate renewal, and certificate revocation. While the initial focus of working group is on domain name certificates (as used by web servers), other uses in some IoT deployments is possible.
The Internet Key Exchange (IKEv2)/IPsec – as well as the less used Host Identity protocol (HIP) – reside at or above the network layer in the OSI model. Both protocols are able to perform an authenticated key exchange and set up the IPsec for secure payload delivery. Currently, there are also ongoing efforts to create a HIP variant coined Diet HIP [ID-HIP-DEX] that takes constrained networks and nodes into account at the authentication and key exchange level.

Migault et al. [ID-dietesp] are working on a compressed version of IPsec so that it can easily be used by resource-constrained IoT devices. They rely on the Internet Key Exchange Protocol version 2 (IKEv2) for negotiating the compression format.

The Extensible Authentication Protocol (EAP) [RFC3748] is an authentication framework supporting multiple authentication methods. EAP runs directly over the data link layer and, thus, does not require the deployment of IP. It supports duplicate detection and retransmission, but does not allow for packet fragmentation. The Protocol for Carrying Authentication for Network Access (PANA) is a network-layer transport for EAP that enables network access authentication between clients and the network infrastructure. In EAP terms, PANA is a UDP-based EAP lower layer that runs between the EAP peer and the EAP authenticator.

4.3. IoT Security Guidelines

Attacks on and from IoT devices have become common in the last years, for instance, large scale Denial of Service (DoS) attacks on the Internet Infrastructure from compromised IoT devices. This fact has prompted many different standards bodies and consortia to provide guidelines for developers and the Internet community at large to build secure IoT devices and services. A subset of the different guidelines and ongoing projects are as follows:

1. Global System for Mobile Communications (GSM) Association (GSMA) IoT security guidelines [GSMAsecurity]: GSMA has published a set of security guidelines for the benefit of new IoT product and service providers. The guidelines are aimed at device manufacturers, service providers, developers and network operators. An enterprise can complete an IoT Security Self-Assessment to demonstrate that its products and services are aligned with the security guidelines of the GSMA.

2. Broadband Internet Technical Advisory Group (BITAG) IoT Security and Privacy Recommendations [BITAG]: BITAG has published recommendations for ensuring security and privacy of IoT device users. BITAG observes that many IoT devices are shipped from the factory with software that is already outdated and
vulnerable. The report also states that many devices with vulnerabilities will not be fixed either because the manufacturer does not provide updates or because the user does not apply them. The recommendations include that IoT devices should function without cloud and Internet connectivity, and that all IoT devices should have methods for automatic secure software updates.

3. United Kingdom Department for Digital, Culture, Media and Sport (DCMS) [DCMS]: UK DCMS has released a report that includes a list of 13 steps for improving IoT security. These steps, for example, highlight the need for implementing a vulnerability disclosure policy and keeping software updated. The report is aimed at device manufacturers, IoT service providers, mobile application developers and retailers.

4. Cloud Security Alliance (CSA) New Security Guidance for Early Adopters of the IoT [CSA]: CSA recommendations for early adopters of IoT encourages enterprises to implement security at different layers of the protocol stack. It also recommends implementation of an authentication/authorization framework for IoT deployments. A complete list of recommendations is available in the report [CSA].

5. United States Department of Homeland Security [DHS]: DHS has put forth six strategic principles that would enable IoT developers, manufacturers, service providers and consumers to maintain security as they develop, manufacture, implement or use network-connected IoT devices.

6. National Institute of Standards and Technology (NIST) [NIST-Guide]: The NIST special publication urges enterprise and US federal agencies to address security throughout the systems engineering process. The publication builds upon the International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) 15288 standard and augments each process in the system lifecycle with security enhancements.

7. National Institute of Standards and Technology (NIST) [nist-lightweight-project]: NIST is running a project on lightweight cryptography with the purpose of: (i) identifying application areas for which standard cryptographic algorithms are too heavy, classifying them according to some application profiles to be determined; (ii) determining limitations in those existing cryptographic standards; and (iii) standardizing lightweight algorithms that can be used in specific application profiles.
8. Open Web Application Security Project (OWASP) [OWASP]: OWASP provides security guidance for IoT manufacturers, developers and consumers. OWASP also includes guidelines for those who intend to test and analyze IoT devices and applications.

9. IoT Security foundation [IoTSecFoundation]: IoT security foundation has published a document that enlists various considerations that need to be taken into account when developing IoT applications. For example, the document states that IoT devices could use hardware-root of trust to ensure that only authorized software runs on the devices.

10. National Highway Traffic Safety Administration (NHTSA) [NHTSA]: The US NHTSA provides guidance to the automotive industry for improving the cyber security of vehicles. While some of the guidelines are general, the document provides specific recommendations for the automotive industry such as how various automotive manufacturer can share cyber security vulnerabilities discovered.

11. Best Current Practices (BCP) for IoT devices [ID-Moore]: This document provides a list of minimum requirements that vendors of Internet of Things (IoT) devices should take into account while developing applications, services and firmware updates in order to reduce the frequency and severity of security incidents that arise from compromised IoT devices.

12. European Union Agency for Network and Information Security (ENISA) [ENISA-ICS]: ENISA published a document on communication network dependencies for Industrial Control Systems (ICS)/Supervisory Control And Data Acquisition (SCADA) systems in which security vulnerabilities, guidelines and general recommendations are summarized.

13. Internet Society Online Trust Alliance [ISOC-OTA]: The Internet Society’s IoT Trust Framework identifies the core requirements manufacturers, service providers, distributors, purchasers and policymakers need to understand, assess and embrace for effective security and privacy as part of the Internet of Things.

Other guideline and recommendation documents may exist or may later be published. This list should be considered non-exhaustive. Despite the acknowledgment that security in the Internet is needed and the existence of multiple guidelines, the fact is that many IoT devices and systems have very limited security. There are multiple reasons for this. For instance, some manufactures focus on delivering a product without paying enough attention to security.
This may be because of lack of expertise or limited budget. However, the deployment of such insecure devices poses a severe threat on the privacy and safety of users. The vast amount of devices and their inherent mobile nature also implies that an initially secure system can become insecure if a compromised device gains access to the system at some point in time. Even if all other devices in a given environment are secure, this does not prevent external attacks caused by insecure devices. Recently the Federal Communications Commission (FCC) [FCC] has stated the need for additional regulation of IoT systems. It is possible that we may see other such regional regulations in the future.

5. Challenges for a Secure IoT

In this section, we take a closer look at the various security challenges in the operational and technical features of IoT and then discuss how existing Internet security protocols cope with these technical and conceptual challenges through the lifecycle of a thing. This discussion should neither be understood as a comprehensive evaluation of all protocols, nor can it cover all possible aspects of IoT security. Yet, it aims at showing concrete limitations and challenges in some IoT design areas rather than giving an abstract discussion. In this regard, the discussion handles issues that are most important from the authors’ perspectives.

5.1. Constraints and Heterogeneous Communication

Coupling resource-constrained networks and the powerful Internet is a challenge because the resulting heterogeneity of both networks complicates protocol design and system operation. In the following we briefly discuss the resource constraints of IoT devices and the consequences for the use of Internet Protocols in the IoT domain.

5.1.1. Resource Constraints

IoT deployments are often characterized by lossy and low-bandwidth communication channels. IoT devices are also often constrained in terms of CPU, memory, and energy budget available [RFC7228]. These characteristics directly impact the design of protocols for the IoT domain. For instance, small packet size limits at the physical layer (127 Bytes in IEEE 802.15.4) can lead to (i) hop-by-hop fragmentation and reassembly or (ii) small IP-layer maximum transmission unit (MTU). In the first case, excessive fragmentation of large packets that are often required by security protocols may open new attack vectors for state exhaustion attacks. The second case might lead to more fragmentation at the IP layer which commonly downgrades the overall system performance due to packet loss and the need for retransmission.
The size and number of messages should be minimized to reduce memory requirements and optimize bandwidth usage. In this context, layered approaches involving a number of protocols might lead to worse performance in resource-constrained devices since they combine the headers of the different protocols. In some settings, protocol negotiation can increase the number of exchanged messages. To improve performance during basic procedures such as, for example, bootstrapping, it might be a good strategy to perform those procedures at a lower layer.

Small CPUs and scarce memory limit the usage of resource-expensive cryptographic primitives such as public-key cryptography as used in most Internet security standards. This is especially true if the basic cryptographic blocks need to be frequently used or the underlying application demands low delay.

There are ongoing efforts to reduce the resource consumption of security protocols by using more efficient underlying cryptographic primitives such as Elliptic Curve Cryptography [RFC8446]. The specification of elliptic curve X25519 [ecc25519], stream ciphers such as ChaCha [ChaCha], Diet HIP [ID-HIP-DEX], and ECC groups for IKEv2 [RFC5903] are all examples of efforts to make security protocols more resource efficient. Additionally, most modern security protocols have been revised in the last few years to enable cryptographic agility, making cryptographic primitives interchangeable. However, these improvements are only a first step in reducing the computation and communication overhead of Internet protocols. The question remains if other approaches can be applied to leverage key agreement in these heavily resource-constrained environments.

A further fundamental need refers to the limited energy budget available to IoT nodes. Careful protocol (re)design and usage is required to reduce not only the energy consumption during normal operation, but also under DoS attacks. Since the energy consumption of IoT devices differs from other device classes, judgments on the energy consumption of a particular protocol cannot be made without tailor-made IoT implementations.

5.1.2. Denial-of-Service Resistance

The tight memory and processing constraints of things naturally alleviate resource exhaustion attacks. Especially in unattended T2T communication, such attacks are difficult to notice before the service becomes unavailable (for example, because of battery or memory exhaustion). As a DoS countermeasure, DTLS, IKEv2, HIP, and Diet HIP implement return routability checks based on a cookie mechanism to delay the establishment of state at the responding host.
until the address of the initiating host is verified. The effectiveness of these defenses strongly depend on the routing topology of the network. Return routability checks are particularly effective if hosts cannot receive packets addressed to other hosts and if IP addresses present meaningful information as is the case in today’s Internet. However, they are less effective in broadcast media or when attackers can influence the routing and addressing of hosts (for example, if hosts contribute to the routing infrastructure in ad-hoc networks and meshes).

In addition, HIP implements a puzzle mechanism that can force the initiator of a connection (and potential attacker) to solve cryptographic puzzles with variable difficulties. Puzzle-based defense mechanisms are less dependent on the network topology but perform poorly if CPU resources in the network are heterogeneous (for example, if a powerful Internet host attacks a thing). Increasing the puzzle difficulty under attack conditions can easily lead to situations where a powerful attacker can still solve the puzzle while weak IoT clients cannot and are excluded from communicating with the victim. Still, puzzle-based approaches are a viable option for sheltering IoT devices against unintended overload caused by misconfiguration or malfunctioning things.

5.1.3. End-to-end security, protocol translation, and the role of middleboxes

The term end-to-end security often has multiple interpretations. Here, we consider end-to-end security in the context end-to-end IP connectivity, from a sender to a receiver. Services such as confidentiality and integrity protection on packet data, message authentication codes or encryption are typically used to provide end-to-end security. These protection methods render the protected parts of the packets immutable as rewriting is either not possible because a) the relevant information is encrypted and inaccessible to the gateway or b) rewriting integrity-protected parts of the packet would invalidate the end-to-end integrity protection.

Protocols for constrained IoT networks are not exactly identical to their larger Internet counterparts for efficiency and performance reasons. Hence, more or less subtle differences between protocols for constrained IoT networks and Internet protocols will remain. While these differences can be bridged with protocol translators at middleboxes, they may become major obstacles if end-to-end security measures between IoT devices and Internet hosts are needed.

If access to data or messages by the middleboxes is required or acceptable, then a diverse set of approaches for handling such a scenario are available. Note that some of these approaches affect
the meaning of end-to-end security in terms of integrity and confidentiality since the middleboxes will be able to either decrypt or modify partially the exchanged messages:

1. Sharing credentials with middleboxes enables them to transform (for example, decompress, convert, etc.) packets and re-apply the security measures after transformation. This method abandons end-to-end security and is only applicable to simple scenarios with a rudimentary security model.

2. Reusing the Internet wire format for IoT makes conversion between IoT and Internet protocols unnecessary. However, it can lead to poor performance in some use cases because IoT specific optimizations (for example, stateful or stateless compression) are not possible.

3. Selectively protecting vital and immutable packet parts with a message authentication code or with encryption requires a careful balance between performance and security. Otherwise this approach might either result in poor performance or poor security depending on which parts are selected for protection, where they are located in the original packet, and how they are processed. [ID-OSCORE] proposes a solution in this direction by encrypting and integrity protecting most of the message fields except those parts that a middlebox needs to read or change.

4. Homomorphic encryption techniques can be used in the middlebox to perform certain operations. However, this is limited to data processing involving arithmetic operations. Furthermore, performance of existing libraries, for example, SEAL [SEAL] is still too limited and homomorphic encryption techniques are not widely applicable yet.

5. Message authentication codes that sustain transformation can be realized by considering the order of transformation and protection (for example, by creating a signature before compression so that the gateway can decompress the packet without recalculating the signature). Such an approach enables IoT specific optimizations but is more complex and may require application-specific transformations before security is applied. Moreover, the usage of encrypted or integrity-protected data prevents middleboxes from transforming packets.

6. Mechanisms based on object security can bridge the protocol worlds, but still require that the two worlds use the same object security formats. Currently the object security format based on CBOR Object Signing and Encryption (COSE) [RFC8152] is different from JSON Object Signing and Encryption (JOSE) [RFC7520] or
Cryptographic Message Syntax (CMS) [RFC5652]. Legacy devices relying on traditional Internet protocols will need to update to the newer protocols for constrained environments to enable real end-to-end security. Furthermore, middleboxes do not have any access to the data and this approach does not prevent an attacker who is capable of modifying relevant message header fields that are not protected.

To the best of our knowledge, none of the mentioned security approaches that focus on the confidentiality and integrity of the communication exchange between two IP end-points provide the perfect solution in this problem space.

5.1.4. New network architectures and paradigm

There is a multitude of new link layer protocols that aim to address the resource-constrained nature of IoT devices. For example, the IEEE 802.11 ah [IEEE802ah] has been specified for extended range and lower energy consumption to support Internet of Things (IoT) devices. Similarly, Low-Power Wide-Area Network (LPWAN) protocols such as LoRa [lorad] Sigfox [sigfox], NarrowBand IoT (NB-IoT) [nbiot] are all designed for resource-constrained devices that require long range and low bit rates. [RFC8376] provides an informational overview of the set of LPWAN technologies being considered by the IETF. It also identifies the potential gaps that exist between the needs of those technologies and the goal of running IP in such networks. While these protocols allow IoT devices to conserve energy and operate efficiently, they also add additional security challenges. For example, the relatively small MTU can make security handshakes with large X509 certificates a significant overhead. At the same time, new communication paradigms also allow IoT devices to communicate directly amongst themselves with or without support from the network. This communication paradigm is also referred to as Device-to-Device (D2D) or Machine-to-Machine (M2M) or Thing-to-Thing (T2T) communication and it is motivated by a number of features such as improved network performance, lower latency and lower energy requirements.

5.2. Bootstrapping of a Security Domain

Creating a security domain from a set of previously unassociated IoT devices is a key operation in the lifecycle of a thing in an IoT network. This aspect is further elaborated and discussed in the T2TRG draft on bootstrapping [ID-bootstrap].
5.3. Operational Challenges

After the bootstrapping phase, the system enters the operational phase. During the operational phase, things can use the state information created during the bootstrapping phase in order to exchange information securely. In this section, we discuss the security challenges during the operational phase. Note that many of the challenges discussed in Section 5.1 apply during the operational phase.

5.3.1. Group Membership and Security

Group key negotiation is an important security service for IoT communication patterns in which a thing sends some data to multiple things or data flows from multiple things towards a thing. All discussed protocols only cover unicast communication and therefore, do not focus on group-key establishment. This applies in particular to (D)TLS and IKEv2. Thus, a solution is required in this area. A potential solution might be to use the Diffie-Hellman keys - that are used in IKEv2 and HIP to setup a secure unicast link - for group Diffie-Hellman key-negotiations. However, Diffie-Hellman is a relatively heavy solution, especially if the group is large.

Symmetric and asymmetric keys can be used in group communication. Asymmetric keys have the advantage that they can provide source authentication. However, doing broadcast encryption with a single public/private key pair is also not feasible. Although a single symmetric key can be used to encrypt the communication or compute a message authentication code, it has inherent risks since the capture of a single node can compromise the key shared throughout the network. The usage of symmetric-keys also does not provide source authentication. Another factor to consider is that asymmetric cryptography is more resource-intensive than symmetric key solutions. Thus, the security risks and performance trade-offs of applying either symmetric or asymmetric keys to a given IoT use case need to be well-analyzed according to risk and usability assessments.

[ID-multicast] is looking at a combination of symmetric (for encryption) and asymmetric (for authentication) in the same packet.

Conceptually, solutions that provide secure group communication at the network layer (IPsec/IKEv2, HIP/Diet HIP) may have an advantage in terms of the cryptographic overhead when compared to application-focused security solutions (TLS/DTLS). This is due to the fact that application-focused solutions require cryptographic operations per group application, whereas network layer approaches may allow sharing secure group associations between multiple applications (for example, for neighbor discovery and routing or service discovery). Hence, implementing shared features lower in the communication stack can
avoid redundant security measures. However, it is important to note that sharing security contexts among different applications involves potential security threats, e.g., if one of the applications is malicious and monitors exchanged messages or injects fake messages. In the case of OSCORE, it provides security for CoAP group communication as defined in RFC7390, i.e., based on multicast IP. If the same security association is reused for each application, then this solution does not seem to have more cryptographic overhead compared to IPsec.

Several group key solutions have been developed by the MSEC working group (WG-MSEC) of the IETF. The MIKEY architecture [RFC4738] is one example. While these solutions are specifically tailored for multicast and group broadcast applications in the Internet, they should also be considered as candidate solutions for group key agreement in IoT. The MIKEY architecture for example describes a coordinator entity that disseminates symmetric keys over pair-wise end-to-end secured channels. However, such a centralized approach may not be applicable in a distributed IoT environment, where the choice of one or several coordinators and the management of the group key is not trivial.

5.3.2. Mobility and IP Network Dynamics

It is expected that many things (for example, wearable sensors, and user devices) will be mobile in the sense that they are attached to different networks during the lifetime of a security association. Built-in mobility signaling can greatly reduce the overhead of the cryptographic protocols because unnecessary and costly re-establishments of the session (possibly including handshake and key agreement) can be avoided. IKEv2 supports host mobility with the MOBIKE [RFC4555] and [RFC4621] extension. MOBIKE refrains from applying heavyweight cryptographic extensions for mobility. However, MOBIKE mandates the use of IPsec tunnel mode which requires the transmission of an additional IP header in each packet.

HIP offers a simple yet effective mobility management by allowing hosts to signal changes to their associations [RFC8046]. However, slight adjustments might be necessary to reduce the cryptographic costs, for example, by making the public-key signatures in the mobility messages optional. Diet HIP does not define mobility yet but it is sufficiently similar to HIP and can use the same mechanisms. DTLS provides some mobility support by relying on a connection ID (CID). The use of connection IDs can provide all the mobility functionality described in [ID-Williams], except, sending the updated location. The specific need for IP-layer mobility mainly depends on the scenario in which the nodes operate. In many cases, mobility supported by means of a mobile gateway may suffice to enable
mobile IoT networks, such as body sensor networks. Using message-based application-layer security solutions such as OSCORE [ID-OSCORE] can also alleviate the problem of re-establishing lower-layer sessions for mobile nodes.

5.4. Secure software update and cryptographic agility

IoT devices are often expected to stay functional for several years and decades even though they might operate unattended with direct Internet connectivity. Software updates for IoT devices are therefore not only required for new functionality, but also to eliminate security vulnerabilities due to software bugs, design flaws, or deprecated algorithms. Software bugs might remain even after careful code review. Implementations of security protocols might contain (design) flaws. Cryptographic algorithms can also become insecure due to advances in cryptanalysis. Therefore, it is necessary that devices which are incapable of verifying a cryptographic signature are not exposed to the Internet (even indirectly).

Schneier [SchneierSecurity] in his essay highlights several challenges that hinder mechanisms for secure software update of IoT devices. First, there is a lack of incentives for manufacturers, vendors and others on the supply chain to issue updates for their devices. Second, parts of the software running on IoT devices is simply a binary blob without any source code available. Since the complete source code is not available, no patches can be written for that piece of code. Lastly Schneier points out that even when updates are available, users generally have to manually download and install them. However, users are never alerted about security updates and at many times do not have the necessary expertise to manually administer the required updates.

The FTC staff report on Internet of Things - Privacy & Security in a Connected World [FTCreport] and the Article 29 Working Party Opinion 8/2014 on the Recent Developments on the Internet of Things [Article29] also document the challenges for secure remote software update of IoT devices. They note that even providing such a software update capability may add new vulnerabilities for constrained devices. For example, a buffer overflow vulnerability in the implementation of a software update protocol (TR69) [TR69] and an expired certificate in a hub device [wink] demonstrate how the software update process itself can introduce vulnerabilities.

Powerful IoT devices that run general purpose operating systems can make use of sophisticated software update mechanisms known from the desktop world. However, resource-constrained devices typically do not have any operating system and are often not equipped with a
memory management unit or similar tools. Therefore, they might require more specialized solutions.

An important requirement for secure software and firmware updates is source authentication. Source authentication requires the resource-constrained things to implement public-key signature verification algorithms. As stated in Section 5.1.1, resource-constrained things have limited amount of computational capabilities and energy supply available which can hinder the amount and frequency of cryptographic processing that they can perform. In addition to source authentication, software updates might require confidential delivery over a secure (encrypted) channel. The complexity of broadcast encryption can force the usage of point-to-point secure links – however, this increases the duration of a software update in a large system. Alternatively, it may force the usage of solutions in which the software update is delivered to a gateway, and then distributed to the rest of the system with a network key. Sending large amounts of data that later needs to be assembled and verified over a secure channel can consume a lot of energy and computational resources. Correct scheduling of the software updates is also a crucial design challenge. For example, a user of connected light bulbs would not want them to update and restart at night. More importantly, the user would not want all the lights to update at the same time.

Software updates in IoT systems are also needed to update old and insecure cryptographic primitives. However, many IoT systems, some of which are already deployed, are not designed with provisions for cryptographic agility. For example, many devices come with a wireless radio that has an AES128 hardware co-processor. These devices solely rely on the co-processor for encrypting and authenticating messages. A software update adding support for new cryptographic algorithms implemented solely in software might not fit on these devices due to limited memory, or might drastically hinder its operational performance. This can lead to the use of old and insecure software. Therefore, it is important to account for the fact that cryptographic algorithms would need to be updated and consider the following when planning for cryptographic agility:

1. Would it be secure to use the existing cryptographic algorithms available on the device for updating with new cryptographic algorithms that are more secure?

2. Will the new software-based implementation fit on the device given the limited resources?

3. Would the normal operation of existing IoT applications on the device be severely hindered by the update?
Finally, we would like to highlight the previous and ongoing work in the area of secure software and firmware updates at the IETF. [RFC4108] describes how Cryptographic Message Syntax (CMS) [RFC5652] can be used to protect firmware packages. The IAB has also organized a workshop to understand the challenges for secure software update of IoT devices. A summary of the recommendations to the standards community derived from the discussions during that workshop have been documented [RFC8240]. A working group called Software Updates for Internet of Things (suit) [WG-SUIT] is currently working on a new version [RFC4108] to reflect the best current practices for firmware update based on experience from IoT deployments. It is specifically working on describing an IoT firmware update architecture and specifying a manifest format that contains meta-data about the firmware update package. Finally, the Trusted Execution Environment Provisioning working group [WG-TEEP] aims at developing a protocol for lifecycle management of trusted applications running on the secure area of a processor (Trusted Execution Environment (TEE)).

5.5. End-of-Life

Like all commercial devices, IoT devices have a given useful lifetime. The term end-of-life (EOL) is used by vendors or network operators to indicate the point of time in which they limit or end support for the IoT device. This may be planned or unplanned (for example when the manufacturer goes bankrupt, when the vendor just decides to abandon a product, or when a network operator moves to a different type of networking technology). A user should still be able to use and perhaps even update the device. This requires for some form of authorization handover.

Although this may seem far-fetched given the commercial interests and market dynamics, we have examples from the mobile world where the devices have been functional and up-to-date long after the original vendor stopped supporting the device. CyanogenMod for Android devices, and OpenWrt for home routers are two such instances where users have been able to use and update their devices even after the official EOL. Admittedly it is not easy for an average user to install and configure their devices on their own. With the deployment of millions of IoT devices, simpler mechanisms are needed to allow users to add new root-of-trusts and install software and firmware from other sources once the device is EOL.

5.6. Verifying device behavior

Users using new IoT appliances such as Internet-connected smart televisions, speakers and cameras are often unaware that these devices can undermine their privacy. Recent revelations have shown that many IoT device vendors have been collecting sensitive private
data through these connected appliances with or without appropriate user warnings [cctv].

An IoT device user/owner would like to monitor and verify its operational behavior. For instance, the user might want to know if the device is connecting to the server of the manufacturer for any reason. This feature - connecting to the manufacturer’s server - may be necessary in some scenarios, such as during the initial configuration of the device. However, the user should be kept aware of the data that the device is sending back to the vendor. For example, the user might want to know if his/her TV is sending data when he/she inserts a new USB stick.

Providing such information to the users in an understandable fashion is challenging. This is because IoT devices are not only resource-constrained in terms of their computational capability, but also in terms of the user interface available. Also, the network infrastructure where these devices are deployed will vary significantly from one user environment to another. Therefore, where and how this monitoring feature is implemented still remains an open question.

Manufacturer Usage Description (MUD) files [ID-MUD] are perhaps a first step towards implementation of such a monitoring service. The idea behind MUD files is relatively simple: IoT devices would disclose the location of their MUD file to the network during installation. The network can then retrieve those files, and learn about the intended behavior of the devices stated by the device manufacturer. A network monitoring service could then warn the user/owner of devices if they don’t behave as expected.

Many devices and software services that automatically learn and monitor the behavior of different IoT devices in a given network are commercially available. Such monitoring devices/services can be configured by the user to limit network traffic and trigger alarms when unexpected operation of IoT devices is detected.

5.7. Testing: bug hunting and vulnerabilities

Given that IoT devices often have inadvertent vulnerabilities, both users and developers would want to perform extensive testing on their IoT devices, networks, and systems. Nonetheless, since the devices are resource-constrained and manufactured by multiple vendors, some of them very small, devices might be shipped with very limited testing, so that bugs can remain and can be exploited at a later stage. This leads to two main types of challenges:
1. It remains to be seen how the software testing and quality assurance mechanisms used from the desktop and mobile world will be applied to IoT devices to give end users the confidence that the purchased devices are robust. Bodies such as the European Cyber Security Organization (ECSO) [ECSO] are working on processes for security certification of IoT devices.

2. It is also an open question how the combination of devices from multiple vendors might actually lead to dangerous network configurations. For example, if combination of specific devices can trigger unexpected behavior. It is needless to say that the security of the whole system is limited by its weakest point.

5.8. Quantum-resistance

Many IoT systems that are being deployed today will remain operational for many years. With the advancements made in the field of quantum computers, it is possible that large-scale quantum computers are available in the future for performing cryptanalysis on existing cryptographic algorithms and cipher suites. If this happens, it will have two consequences. First, functionalities enabled by means of primitives such as RSA or ECC – namely key exchange, public-key encryption and signature – would not be secure anymore due to Shor’s algorithm. Second, the security level of symmetric algorithms will decrease, for example, the security of a block cipher with a key size of b bits will only offer $b/2$ bits of security due to Grover’s algorithm.

The above scenario becomes more urgent when we consider the so called "harvest and decrypt" attack in which an attacker can start to harvest (store) encrypted data today, before a quantum-computer is available, and decrypt it years later, once a quantum computer is available. Such "harvest and decrypt" attacks are not new and were used in the Venona project [venona-project]. Many IoT devices that are being deployed today will remain operational for a decade or even longer. During this time, digital signatures used to sign software updates might become obsolete making the secure update of IoT devices challenging.

This situation would require us to move to quantum-resistant alternatives, in particular, for those functionalities involving key exchange, public-key encryption and signatures. [ID-c2pq] describes when quantum computers may become widely available and what steps are necessary for transition to cryptographic algorithms that provide security even in presence of quantum computers. While future planning is hard, it may be a necessity in certain critical IoT deployments which are expected to last decades or more. Although increasing the key-size of the different algorithms is definitely an
option, it would also incur additional computational overhead and network traffic. This would be undesirable in most scenarios. There have been recent advancements in quantum-resistant cryptography. We refer to [ETSI-GR-QSC-001] for an extensive overview of existing quantum-resistant cryptography and [RFC7696] provides guidelines for cryptographic algorithm agility.

5.9. Privacy protection

People will eventually be surrounded by hundreds of connected IoT devices. Even if the communication links are encrypted and protected, information about people might still be collected or processed for different purposes. The fact that IoT devices in the vicinity of people might enable more pervasive monitoring can negatively impact their privacy. For instance, imagine the scenario where a static presence sensor emits a packet due to the presence or absence of people in its vicinity. In such a scenario, anyone who can observe the packet, can gather critical privacy-sensitive information.

Such information about people is referred to as personal data in the European Union (EU) or Personally identifiable information (PII) in the United States (US). In particular, the General Data Protection Regulation (GDPR) [GDPR] defines personal data as: ‘any information relating to an identified or identifiable natural person (‘data subject’); an identifiable natural person is one who can be identified, directly or indirectly, in particular by reference to an identifier such as a name, an identification number, location data, an online identifier or to one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or social identity of that natural person’.

Ziegeldorf [Ziegeldorf] defines privacy in IoT as a threefold guarantee:

1. Awareness of the privacy risks imposed by IoT devices and services. This awareness is achieved by means of transparent practices by the data controller, i.e., the entity that is providing IoT devices and/or services.

2. Individual control over the collection and processing of personal information by IoT devices and services.

3. Awareness and control of the subsequent use and dissemination of personal information by data controllers to any entity outside the subject’s personal control sphere. This point implies that the data controller must be accountable for its actions on the personal information.
Based on this definition, several threats to the privacy of users have been documented [Ziegeldorf] and [RFC6973], in particular considering the IoT environment and its lifecycle:

1. Identification - refers to the identification of the users, their IoT devices, and generated data.

2. Localization - relates to the capability of locating a user and even tracking them, e.g., by tracking MAC addresses in Wi-Fi or Bluetooth.

3. Profiling - is about creating a profile of the user and their preferences.

4. Interaction - occurs when a user has been profiled and a given interaction is preferred, presenting (for example, visually) some information that discloses private information.

5. Lifecycle transitions - take place when devices are, for example, sold without properly removing private data.

6. Inventory attacks - happen if specific information about IoT devices in possession of a user is disclosed.

7. Linkage - is about when information of two or more IoT systems (or other data sets) is combined so that a broader view of the personal data captured can be created.

When IoT systems are deployed, the above issues should be considered to ensure that private data remains private. These issues are particularly challenging in environments in which multiple users with different privacy preferences interact with the same IoT devices. For example, an IoT device controlled by user A (low privacy settings) might leak private information about another user B (high privacy settings). How to deal with these threats in practice is an area of ongoing research.

5.10. Reverse engineering considerations

Many IoT devices are resource-constrained and often deployed in unattended environments. Some of these devices can also be purchased off-the-shelf or online without any credential-provisioning process. Therefore, an attacker can have direct access to the device and apply advanced techniques to retrieve information that a traditional black box model does not consider. Example of those techniques are side-channel attacks or code disassembly. By doing this, the attacker can try to retrieve data such as:
1. long term keys. These long term keys can be extracted by means of a side-channel attack or reverse engineering. If these keys are exposed, then they might be used to perform attacks on devices deployed in other locations.

2. source code. Extraction of source code might allow the attacker to determine bugs or find exploits to perform other types of attacks. The attacker might also just sell the source code.

3. proprietary algorithms. The attacker can analyze these algorithms gaining valuable know-how. The attacker can also create copies of the product (based on those proprietary algorithms) or modify the algorithms to perform more advanced attacks.

4. configuration or personal data. The attacker might be able to read personal data, e.g., healthcare data, that has been stored on a device.

One existing solution to prevent such data leaks is the use of a secure element, a tamper-resistant device that is capable of securely hosting applications and their confidential data. Another potential solution is the usage of Physical Unclonable Function (PUFs) that serves as unique digital fingerprint of a hardware device. PUFs can also enable other functionalities such as secure key storage. Protection against such data leakage patterns is non-trivial since devices are inherently resource-constrained. An open question is whether there are any viable techniques to protect IoT devices and the data in the devices in such an adversarial model.

5.11. Trustworthy IoT Operation

Flaws in the design and implementation of IoT devices and networks can lead to security vulnerabilities. A common flaw is the use of well-known or easy-to-guess passwords for configuration of IoT devices. Many such compromised IoT devices can be found on the Internet by means of tools such as Shodan [shodan]. Once discovered, these compromised devices can be exploited at scale, for example, to launch DDoS attacks. Dyn, a major DNS, was attacked by means of a DDoS attack originating from a large IoT botnet composed of thousands of compromised IP-cameras [dyn-attack]. There are several open research questions in this area:

1. How to avoid vulnerabilities in IoT devices that can lead to large-scale attacks?

2. How to detect sophisticated attacks against IoT devices?
3. How to prevent attackers from exploiting known vulnerabilities at a large scale?

Some ideas are being explored to address this issue. One of the approaches relies on the use of Manufacturer Usage Description (MUD) files [ID-MUD]. As explained earlier, this proposal requires IoT devices to disclose the location of their MUD file to the network during installation. The network can then (i) retrieve those files, (ii) learn from the manufacturers the intended usage of the devices, for example, which services they need to access, and then (iii) create suitable filters and firewall rules.

6. Conclusions and Next Steps

This Internet Draft provides IoT security researchers, system designers and implementers with an overview of security requirements in the IP-based Internet of Things. We discuss the security threats, state-of-the-art, and challenges.

Although plenty of steps have been realized during the last few years (summarized in Section 4.1) and many organizations are publishing general recommendations (Section 4.3) describing how IoT should be secured, there are many challenges ahead that require further attention. Challenges of particular importance are bootstrapping of security, group security, secure software updates, long-term security and quantum-resistance, privacy protection, data leakage prevention – where data could be cryptographic keys, personal data, or even algorithms – and ensuring trustworthy IoT operation.

Authors of new IoT specifications and implementors need to consider how all the security challenges discussed in this draft (and those that emerge later) affect their work. The authors of IoT specifications not only need to put in a real effort towards addressing the security challenges, but also clearly documenting how the security challenges are addressed. This would reduce the chances of security vulnerabilities in the code written by implementors of those specifications.

7. Security Considerations

This entire memo deals with security issues.

8. IANA Considerations

This document contains no request to IANA.
9. Acknowledgments

We gratefully acknowledge feedback and fruitful discussion with Tobias Heer, Robert Moskowitz, Thorsten Dahm, Hannes Tschofenig, Carsten Bormann, Barry Raveendran, Ari Keranen, Goran Selander, Fred Baker, Vicent Roca, Thomas Fossati and Eliot Lear. We acknowledge the additional authors of the previous version of this document Sye Loong Keoh, Rene Hummen and Rene Struik.

10. Informative References

[cctv] "Backdoor In MVPower DVR Firmware Sends CCTV Stills To an Email Address In China", Web https://hardware.slashdot.org/story/16/02/17/0422259/backdoor-in-mvpower-dvr-firmware-sends-cctv-stills-to-an-email-address-in-china, n.d..

[GDPR] "The EU General Data Protection Regulation",
Web https://www.eugdpr.org/, n.d..

[GSMAsecurity] "GSMA IoT Security Guidelines", Web

[ID-6lonfc] Choi, Y., Hong, Y., Youn, J., Kim, D., and J. Choi,

Moskowitz, R., "HIP Diet EXchange (DEX)", draft-moskowitz-hip-rg-dex-06 (work in progress), May 2012.

"Industrial Internet Consortium", Web http://www.iiconsortium.org/, n.d.

[ISOC-OTA] "Internet Society’s Online Trust Alliance (OTA)", Web https://www.internetsociety.org/ota/, n.d..

[LWM2M] "OMA LWM2M", Web http://openmobilealliance.org/iot/lightweight-m2m-lwm2m, n.d..

Internet-Draft IoT Security December 2018

[NISTSP800-30r1]
"NIST SP 800-30r1 - Guide for Conducting Risk Assessments", Web

[NISTSP800-34r1]

[OneM2M] "OneM2M", Web http://www.onem2m.org/, n.d..

[RFC4108] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108,
 DOI 10.17487/RFC4108, August 2005,

 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,

 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,

[RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,

 Mobility and Multihoming (MOBIKE) Protocol", RFC 4621,
 DOI 10.17487/RFC4621, August 2006,

[RFC4738] Ignjatic, D., Dondeti, L., Audet, F., and P. Lin, "MIKEY-
 RSA-R: An Additional Mode of Key Distribution in
 Multimedia Internet KEYing (MIKEY)", RFC 4738,
 DOI 10.17487/RFC4738, November 2006,

 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals",
 RFC 4919, DOI 10.17487/RFC4919, August 2007,

[RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,

 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,

Internet-Draft IoT Security December 2018

Internet-Draft IoT Security December 2018

[RFC7520] Miller, M., "Examples of Protecting Content Using JSON
 Object Signing and Encryption (JOSE)", RFC 7520,
 DOI 10.17487/RFC7520, May 2015,

[RFC7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
 Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
 Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,

[RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

 and S. Kumar, "Use Cases for Authentication and
 Authorization in Constrained Environments", RFC 7744,
 DOI 10.17487/RFC7744, January 2016,

 (IKEv2) Initiator Implementation", RFC 7815,
 DOI 10.17487/RFC7815, March 2016,

 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,

 with the Host Identity Protocol", RFC 8046,
 DOI 10.17487/RFC8046, February 2017,

 M., and D. Barthel, "Transmission of IPv6 Packets over
 Digital Enhanced Cordless Telecommunications (DECT) Ultra
 Low Energy (ULE)", RFC 8105, DOI 10.17487/RFC8105, May

[RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

[sigfox] "Sigfox - The Global Communications Service Provider for the Internet of Things (IoT)", Web https://www.sigfox.com/, n.d..

[WG-SUIT] "IETF Software Updates for Internet of Things (suit)", Web https://datatracker.ietf.org/group/suit/about/, n.d..

Authors’ Addresses

Oscar Garcia-Morchon
Philips IP&S
High Tech Campus 5
Eindhoven, 5656 AA
The Netherlands

Email: oscar.garcia-morchon@philips.com

Sandeep S. Kumar
Philips Research
High Tech Campus
Eindhoven, 5656 AA
The Netherlands

Email: sandeep.kumar@philips.com

Mohit Sethi
Ericsson
Hirsalantie 11
Jorvas, 02420
Finland

Email: mohit@piuha.net
Abstract

This document gives guidance for designing Internet of Things (IoT) systems that follow the principles of the Representational State Transfer (REST) architectural style. This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 26, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Terminology ... 3
3. Basics .. 6
 3.1. Architecture .. 6
 3.2. System design 8
 3.3. Uniform Resource Identifiers (URIs) 9
 3.4. Representations 10
 3.5. HTTP/CoAP Methods 11
 3.5.1. GET ... 12
 3.5.2. POST .. 12
 3.5.3. PUT ... 12
 3.5.4. DELETE ... 13
 3.5.5. FETCH .. 13
 3.5.6. PATCH .. 13
 3.6. HTTP/CoAP Status/Response Codes 13
4. REST Constraints ... 14
 4.1. Client-Server 14
 4.2. Stateless ... 15
 4.3. Cache .. 15
 4.4. Uniform Interface 16
 4.5. Layered System 17
 4.6. Code-on-Demand 17
5. Hypermedia-driven Applications 18
 5.1. Motivation .. 18
 5.2. Knowledge .. 19
 5.3. Interaction ... 19
 5.4. Hypermedia-driven Design Guidance 20
6. Design Patterns ... 20
 6.1. Collections ... 20
 6.2. Calling a Procedure 21
 6.2.1. Instantly Returning Procedures 21
 6.2.2. Long-running Procedures 21
 6.2.3. Conversion 22
 6.2.4. Events as State 22
 6.3. Server Push ... 23
7. Security Considerations 24
8. Acknowledgement .. 25
9. References ... 25
 9.1. Normative References 25
 9.2. Informative References 27
Appendix A. Future Work 29
Authors’ Addresses ... 29
1. Introduction

The Representational State Transfer (REST) architectural style [REST] is a set of guidelines and best practices for building distributed hypermedia systems. At its core is a set of constraints, which when fulfilled enable desirable properties for distributed software systems such as scalability and modifiability. When REST principles are applied to the design of a system, the result is often called RESTful and in particular an API following these principles is called a RESTful API.

Different protocols can be used with RESTful systems, but at the time of writing the most common protocols are HTTP [RFC7230] and CoAP [RFC7252]. Since RESTful APIs are often simple and lightweight, they are a good fit for various IoT applications. The goal of this document is to give basic guidance for designing RESTful systems and APIs for IoT applications and give pointers for more information.

Design of a good RESTful IoT system has naturally many commonalities with other Web systems. Compared to other systems, the key characteristics of many IoT systems include:

- need to accommodate for constrained devices, so with IoT, REST is not only used for scaling out (large number of clients on a web server), but also for scaling down (efficient server on constrained node)
- data formats, interaction patterns, and other mechanisms that minimize, or preferably avoid, the need for human interaction
- preference for compact and simple data formats to facilitate efficient transfer over (often) constrained networks and lightweight processing in constrained nodes
- the usually large number of endpoints can not be updated simultaneously, yet the system needs to be able to evolve in the field without long downtimes

2. Terminology

This section explains some of the common terminology that is used in the context of RESTful design for IoT systems. For terminology of constrained nodes and networks, see [RFC7228].

Cache: A local store of response messages and the subsystem that controls storage, retrieval, and deletion of messages in it.
Client: A node that sends requests to servers and receives responses. In RESTful IoT systems it’s common for nodes to have more than one role (e.g., both server and client; see Section 3.1).

Client State: The state kept by a client between requests. This typically includes the currently processed representation, the set of active requests, the history of requests, bookmarks (URIs stored for later retrieval), and application-specific state (e.g., local variables). (Note that this is called "Application State" in [REST], which has some ambiguity in modern (IoT) systems where the overall state of the distributed application (i.e., application state) is reflected in the union of all Client States and Resource States of all clients and servers involved.)

Content Negotiation: The practice of determining the "best" representation for a client when examining the current state of a resource. The most common forms of content negotiation are Proactive Content Negotiation and Reactive Content Negotiation.

Dereference: To use an access mechanism (e.g., HTTP or CoAP) to perform an action on a URI’s resource.

Dereferencable URI: A URI that can be dereferenced, i.e., an action can be performed on the identified resource. Not all HTTP or CoAP URIs are dereferencable, e.g., when the target resource does not exist.

Form: A hypermedia control that enables a client to change the state of a resource or to construct a query locally.

Forward Proxy: An intermediary that is selected by a client, usually via local configuration rules, and that can be tasked to make requests on behalf of the client. This may be useful, for example, when the client lacks the capability to make the request itself or to service the response from a cache in order to reduce response time, network bandwidth, and energy consumption.

Gateway: A reverse proxy that provides an interface to a non-RESTful system such as legacy systems or alternative technologies such as Bluetooth ATT/GATT. See also "Reverse Proxy".

Hypermedia Control: A component, such as a link or a form, embedded in a representation that identifies a resource for future hypermedia interactions. If the client engages in an interaction with the identified resource, the result may be a change to resource state and/or client state.
Idempotent Method: A method where multiple identical requests with that method lead to the same visible resource state as a single such request.

Link: A hypermedia control that enables a client to navigate between resources and thereby change the client state.

Link Relation Type: An identifier that describes how the link target resource relates to the current resource (see [RFC5988]).

Media Type: A string such as "text/html" or "application/json" that is used to label representations so that it is known how the representation should be interpreted and how it is encoded.

Method: An operation associated with a resource. Common methods include GET, PUT, POST, and DELETE (see Section 3.5 for details).

Origin Server: A server that is the definitive source for representations of its resources and the ultimate recipient of any request that intends to modify its resources. In contrast, intermediaries (such as proxies caching a representation) can assume the role of a server, but are not the source for representations as these are acquired from the origin server.

Proactive Content Negotiation: A content negotiation mechanism where the server selects a representation based on the expressed preference of the client. For example, an IoT application could send a request to a sensor with preferred media type "application/senml+json".

Reactive Content Negotiation: A content negotiation mechanism where the client selects a representation from a list of available representations. The list may, for example, be included by a server in an initial response. If the user agent is not satisfied by the initial response representation, it can request one or more of the alternative representations, selected based on metadata (e.g., available media types) included in the response.

Representation: A serialization that represents the current or intended state of a resource and that can be transferred between clients and servers. REST requires representations to be self-describing, meaning that there must be metadata that allows peers to understand which representation format is used. Depending on the protocol needs and capabilities, there can be additional metadata that is transmitted along with the representation.

Representation Format: A set of rules for serializing resource state. On the Web, the most prevalent representation format is
HTML. Other common formats include plain text and formats based on JSON [RFC7159], XML, or RDF. Within IoT systems, often compact formats based on JSON, CBOR [RFC7049], and EXI [W3C.REC-exi-20110310] are used.

Representational State Transfer (REST): An architectural style for Internet-scale distributed hypermedia systems.

Resource: An item of interest identified by a URI. Anything that can be named can be a resource. A resource often encapsulates a piece of state in a system. Typical resources in an IoT system can be, e.g., a sensor, the current value of a sensor, the location of a device, or the current state of an actuator.

Resource State: A model of a resource’s possible states that is represented in a supported representation type, typically a media type. Resources can change state because of REST interactions with them, or they can change state for reasons outside of the REST model.

Resource Type: An identifier that annotates the application-semantics of a resource (see Section 3.1 of [RFC6690]).

Reverse Proxy: An intermediary that appears as a server towards the client but satisfies the requests by forwarding them to the actual server (possibly via one or more other intermediaries). A reverse proxy is often used to encapsulate legacy services, to improve server performance through caching, and to enable load balancing across multiple machines.

Safe Method: A method that does not result in any state change on the origin server when applied to a resource.

Server: A node that listens for requests, performs the requested operation and sends responses back to the clients.

Uniform Resource Identifier (URI): A global identifier for resources. See Section 3.3 for more details.

3. Basics

3.1. Architecture

The components of a RESTful system are assigned one or both of two roles: client or server. Note that the terms "client" and "server" refer only to the roles that the nodes assume for a particular message exchange. The same node might act as a client in some communications and a server in others. Classic user agents (e.g.,
Web browsers) are always in the client role and have the initiative to issue requests. Origin servers always have the server role and govern over the resources they host. Simple IoT devices, such as sensors and actuators, are commonly acting as servers and exposing their physical world interaction capabilities (e.g., temperature measurement or door lock control capability) as resources. Typical IoT system client can be a cloud service that retrieves data from the sensors and commands the actuators based on the sensor information. Alternatively an IoT data storage system could work as a server where IoT sensor devices send data, in client role.

Intermediaries (such as forward proxies, reverse proxies, and gateways) implement both roles, but only forward requests to other intermediaries or origin servers. They can also translate requests to different protocols, for instance, as CoAP-HTTP cross-proxies.

Reverse proxies are usually imposed by the origin server. In addition to the features of a forward proxy, they can also provide an interface for non-RESTful services such as legacy systems or alternative technologies such as Bluetooth ATT/GATT. In this case, reverse proxies are usually called gateways. This property is enabled by the Layered System constraint of REST, which says that a client cannot see beyond the server it is connected to (i.e., it is left unaware of the protocol/paradigm change).
Nodes in IoT systems often implement both roles. Unlike intermediaries, however, they can take the initiative as a client (e.g., to register with a directory, such as CoRE Resource Directory [I-D.ietf-core-resource-directory], or to interact with another thing) and act as origin server at the same time (e.g., to serve sensor values or provide an actuator interface).

3.2. System design

When designing a RESTful system, the primary effort goes into modeling the state of the distributed application and assigning it to the different components (i.e., clients and servers). How clients can navigate through the resources and modify state to achieve their goals is defined through hypermedia controls, that is, links and forms. Hypermedia controls span a kind of a state machine where the nodes are resources and the transitions are links or forms. Clients run this state machine (i.e., the application) by retrieving representations, processing the data, and following the included hypermedia controls. In REST, remote state is changed by submitting forms. This is usually done by retrieving the current state, modifying the state on the client side, and transferring the new state to the server in the form of new representations – rather than calling a service and modifying the state on the server side.

Client state encompasses the current state of the described state machine and the possible next transitions derived from the hypermedia controls.
controls within the currently processed representation (see Section 2). Furthermore, clients can have part of the state of the distributed application in local variables.

Resource state includes the more persistent data of an application (i.e., independent of individual clients). This can be static data such as device descriptions, persistent data such as system configurations, but also dynamic data such as the current value of a sensor on a thing.

It is important to distinguish between "client state" and "resource state" and keep them separate. Following the Stateless constraint, the client state must be kept only on clients. That is, there is no establishment of shared information about past and future interactions between client and server (usually called a session). On the one hand, this makes requests a bit more verbose since every request must contain all the information necessary to process it. On the other hand, this makes servers efficient and scalable, since they do not have to keep any state about their clients. Requests can easily be distributed over multiple worker threads or server instances. For IoT systems, this constraint lowers the memory requirements for server implementations, which is particularly important for constrained servers (e.g., sensor nodes) and servers serving large amount of clients (e.g., Resource Directory).

3.3. Uniform Resource Identifiers (URIs)

An important part of RESTful API design is to model the system as a set of resources whose state can be retrieved and/or modified and where resources can be potentially also created and/or deleted.

Uniform Resource Identifiers (URIs) are used to indicate a resource for interaction, to reference a resource from another resource, to advertise or bookmark a resource, or to index a resource by search engines.

```
foo://example.com:8042/over/there?name=ferret#nose
```

```
\_/   \______________/
|           |            |            |        |
scheme     authority       path        query   fragment
```

A URI is a sequence of characters that matches the syntax defined in [RFC3986]. It consists of a hierarchical sequence of five components: scheme, authority, path, query, and fragment (from most significant to least significant). A scheme creates a namespace for resources and defines how the following components identify a resource within that namespace. The authority identifies an entity that governs part of the namespace, such as the server.

"www.example.org" in the "http" scheme. A host name (e.g., a fully qualified domain name) or an IP address, potentially followed by a transport layer port number, are usually used in the authority component for the "http" and "coap" schemes. The path and query contain data to identify a resource within the scope of the URI's scheme and naming authority. The fragment allows to refer to some portion of the resource, such as a Record in a SenML Pack. However, fragments are processed only at client side and not sent on the wire. [RFC7320] provides more details on URI design and ownership with best current practices for establishing URI structures, conventions, and formats.

For RESTful IoT applications, typical schemes include "https", "coaps", "http", and "coap". These refer to HTTP and CoAP, with and without Transport Layer Security (TLS) [RFC5246]. (CoAP uses Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These four schemes also provide means for locating the resource; using the HTTP protocol for "http" and "https", and with the CoAP protocol for "coap" and "coaps". If the scheme is different for two URIs (e.g., "coap" vs. "coaps"), it is important to note that even if the rest of the URI is identical, these are two different resources, in two distinct namespaces.

Some schemes are for URIs with main purpose as identifiers and hence are not dereferencable, e.g., the "urn" scheme can be used to construct unique names in registered namespaces. In particular the "urn:dev" [I-D.ietf-core-dev-urn] details multiple ways for generating and representing endpoint identifiers of IoT devices.

The query parameters can be used to parametrize the resource. For example, a GET request may use query parameters to request the server to send only certain kind data of the resource (i.e., filtering the response). Query parameters in PUT and POST requests do not have such established semantics and are not commonly used. Whether the order of the query parameters matters in URIs is unspecified and they can be re-ordered e.g., by proxies. Therefore applications should not rely on their order; see Section 3.3 of [RFC6943] for more details.

3.4. Representations

Clients can retrieve the resource state from an origin server or manipulate resource state on the origin server by transferring resource representations. Resource representations have a media type that tells how the representation should be interpreted by identifying the representation format used.

Typical media types for IoT systems include:
o "text/plain" for simple UTF-8 text

o "application/octet-stream" for arbitrary binary data

o "application/json" for the JSON format [RFC7159]

o "application/cbor" for CBOR [RFC7049]

o "application/exi" for EXI [W3C.REC-exi-20110310]

o "application/senml+json" and "application/senml+cbor" for Sensor Measurement Lists (SenML) data [RFC8428]

A full list of registered Internet Media Types is available at the IANA registry [IANA-media-types] and numerical media types registered for use with CoAP are listed at CoAP Content-Formats IANA registry [IANA-CoAP-media].

3.5. HTTP/CoAP Methods

Section 4.3 of [RFC7231] defines the set of methods in HTTP; Section 5.8 of [RFC7252] defines the set of methods in CoAP. As part of the Uniform Interface constraint, each method can have certain properties that give guarantees to clients.

Safe methods do not cause any state change on the origin server when applied to a resource. For example, the GET method only returns a representation of the resource state but does not change the resource. Thus, it is always safe for a client to retrieve a representation without affecting server-side state.

Idempotent methods can be applied multiple times to the same resource while causing the same visible resource state as a single such request. For example, the PUT method replaces the state of a resource with a new state; replacing the state multiple times with the same new state still results in the same state for the resource. However, the response from the server can be different when the same idempotent method is used multiple times. For example when DELETE is used twice on an existing resource, the first request would remove the association and return success acknowledgement whereas the second request would likely result in error response due to non-existing resource.

The following lists the most relevant methods and gives a short explanation of their semantics.
3.5.1. GET

The GET method requests a current representation for the target resource, while the origin server must ensure that there are no side-effects on the resource state. Only the origin server needs to know how each of its resource identifiers corresponds to an implementation and how each implementation manages to select and send a current representation of the target resource in a response to GET.

A payload within a GET request message has no defined semantics.

The GET method is safe and idempotent.

3.5.2. POST

The POST method requests that the target resource process the representation enclosed in the request according to the resource’s own specific semantics.

If one or more resources has been created on the origin server as a result of successfully processing a POST request, the origin server sends a 201 (Created) response containing a Location header field (with HTTP) or Location-Path and/or Location-Query Options (with CoAP) that provide an identifier for the resource created. The server also includes a representation that describes the status of the request while referring to the new resource(s).

The POST method is not safe nor idempotent.

3.5.3. PUT

The PUT method requests that the state of the target resource be created or replaced with the state defined by the representation enclosed in the request message payload. A successful PUT of a given representation would suggest that a subsequent GET on that same target resource will result in an equivalent representation being sent.

The fundamental difference between the POST and PUT methods is highlighted by the different intent for the enclosed representation. The target resource in a POST request is intended to handle the enclosed representation according to the resource’s own semantics, whereas the enclosed representation in a PUT request is defined as replacing the state of the target resource. Hence, the intent of PUT is idempotent and visible to intermediaries, even though the exact effect is only known by the origin server.

The PUT method is not safe, but is idempotent.
3.5.4. DELETE

The DELETE method requests that the origin server remove the association between the target resource and its current functionality.

If the target resource has one or more current representations, they might or might not be destroyed by the origin server, and the associated storage might or might not be reclaimed, depending entirely on the nature of the resource and its implementation by the origin server.

The DELETE method is not safe, but is idempotent.

3.5.5. FETCH

The CoAP-specific FETCH method [RFC8132] requests a representation of a resource parameterized by a representation enclosed in the request.

The fundamental difference between the GET and FETCH methods is that the request parameters are included as the payload of a FETCH request, while in a GET request they’re typically part of the query string of the request URI.

The FETCH method is safe and idempotent.

3.5.6. PATCH

The PATCH method [RFC5789] [RFC8132] requests that a set of changes described in the request entity be applied to the target resource.

The PATCH method is not safe nor idempotent.

The CoAP-specific iPATCH method is a variant of the PATCH method that is not safe, but is idempotent.

3.6. HTTP/CoAP Status/Response Codes

Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are used by application to indicate whether a request was understood and satisfied, and how to interpret the answer. Similarly, Section 5.9 of [RFC7252] defines the set of Response Codes in CoAP.

The status codes consist of three digits (e.g., "404" with HTTP or "4.04" with CoAP) where the first digit expresses the class of the code. Implementations do not need to understand all status codes, but the class of the code must be understood. Codes starting with 1 are informational; the request was received and being processed.
Codes starting with 2 indicate a successful request. Codes starting with 3 indicate redirection; further action is needed to complete the request. Codes starting with 4 and 5 indicate errors. The codes starting with 4 mean client error (e.g., bad syntax in the request) whereas codes starting with 5 mean server error; there was no apparent problem with the request, but server was not able to fulfill the request.

Responses may be stored in a cache to satisfy future, equivalent requests. HTTP and CoAP use two different patterns to decide what responses are cacheable. In HTTP, the cacheability of a response depends on the request method (e.g., responses returned in reply to a GET request are cacheable). In CoAP, the cacheability of a response depends on the response code (e.g., responses with code 2.04 are cacheable). This difference also leads to slightly different semantics for the codes starting with 2; for example, CoAP does not have a 2.00 response code whereas 200 ("OK") is commonly used with HTTP.

4. REST Constraints

The REST architectural style defines a set of constraints for the system design. When all constraints are applied correctly, REST enables architectural properties of key interest [REST]:

- Performance
- Scalability
- Reliability
- Simplicity
- Modifiability
- Visibility
- Portability

The following sub-sections briefly summarize the REST constraints and explain how they enable the listed properties.

4.1. Client-Server

As explained in the Architecture section, RESTful system components have clear roles in every interaction. Clients have the initiative to issue requests, intermediaries can only forward requests, and
servers respond requests, while origin servers are the ultimate recipient of requests that intent to modify resource state.

This improves simplicity and visibility (also for digital forensics), as it is clear which component started an interaction. Furthermore, it improves modifiability through a clear separation of concerns.

In IoT systems, endpoints often assume both roles of client and (origin) server simultaneously. When an IoT device has initiative (because there is a user, e.g., pressing a button, or installed rules/policies), it acts as a client. When a device offers a service, it is in server role.

4.2. Stateless

The Stateless constraint requires messages to be self-contained. They must contain all the information to process it, independent from previous messages. This allows to strictly separate the client state from the resource state.

This improves scalability and reliability, since servers or worker threads can be replicated. It also improves visibility because message traces contain all the information to understand the logged interactions. Furthermore, the Stateless constraint enables caching.

For IoT, the scaling properties of REST become particularly important. Note that being self-contained does not necessarily mean that all information has to be inlined. Constrained IoT devices may choose to externalize metadata and hypermedia controls using Web linking, so that only the dynamic content needs to be sent and the static content such as schemas or controls can be cached.

4.3. Cache

This constraint requires responses to have implicit or explicit cache-control metadata. This enables clients and intermediary to store responses and re-use them to locally answer future requests. The cache-control metadata is necessary to decide whether the information in the cached response is still fresh or stale and needs to be discarded.

Cache improves performance, as less data needs to be transferred and response times can be reduced significantly. Less transfers also improves scalability, as origin servers can be protected from too many requests. Local caches furthermore improve reliability, since requests can be answered even if the origin server is temporarily not available.
Caching usually only makes sense when the data is used by multiple participants. In the IoT, however, it might make sense to cache also individual data to protect constrained devices. Security often hinders the ability to cache responses. For IoT systems, object security may be preferable over transport layer security, as it enables intermediaries to cache responses while preserving security.

4.4. Uniform Interface

All RESTful APIs use the same, uniform interface independent of the application. This simple interaction model is enabled by exchanging representations and modifying state locally, which simplifies the interface between clients and servers to a small set of methods to retrieve, update, and delete state - which applies to all applications.

In contrast, in a service-oriented RPC approach, all required ways to modify state need to be modeled explicitly in the interface resulting in a large set of methods - which differs from application to application. Moreover, it is also likely that different parties come up with different ways how to modify state, including the naming of the procedures, while the state within an application is a bit easier to agree on.

A REST interface is fully defined by:

- URIs to identify resources
- Representation formats to represent and manipulate resource state
- Self-descriptive messages with a standard set of methods (e.g., GET, POST, PUT, DELETE with their guaranteed properties)
- Hypermedia controls within representations

The concept of hypermedia controls is also known as HATEOAS: Hypermedia As The Engine Of Application State. The origin server embeds controls for the interface into its representations and thereby informs the client about possible next requests. The mostly used control for RESTful systems is Web Linking [RFC5590]. Hypermedia forms are more powerful controls that describe how to construct more complex requests, including representations to modify resource state.

While this is the most complex constraints (in particular the hypermedia controls), it improves many different key properties. It improves simplicity, as uniform interfaces are easier to understand. The self-descriptive messages improve visibility. The limitation to
a known set of representation formats fosters portability. Most of all, however, this constraint is the key to modifiability, as hypermedia-driven, uniform interfaces allow clients and servers to evolve independently, and hence enable a system to evolve.

For a large number of IoT applications, the hypermedia controls are mainly used for the discovery of resources, as they often serve sensor data. Such resources are "dead ends", as they usually do not link any further and only have one form of interaction: fetching the sensor value. For IoT, the critical parts of the Uniform Interface constraint are the descriptions of messages and representation formats used. Simply using, for instance, "application/json" does not help machine clients to understand the semantics of the representation. Yet defining very precise media types limits the re-usability and interoperability. Representation formats such as SenML [RFC8428] try to find a good trade-off between precision and re-usability. Another approach is to combine a generic format such as JSON with syntactic as well as semantic annotations (see [I-D.handrews-json-schema-validation] and [W3C-TD], resp.).

4.5. Layered System

This constraint enforces that a client cannot see beyond the server with which it is interacting.

A layered system is easier to modify, as topology changes become transparent. Furthermore, this helps scalability, as intermediaries such as load balancers can be introduced without changing the client side. The clean separation of concerns helps with simplicity.

IoT systems greatly benefit from this constraint, as it allows to effectively shield constrained devices behind intermediaries and is also the basis for gateways, which are used to integrate other (IoT) ecosystems.

4.6. Code-on-Demand

This principle enables origin servers to ship code to clients.

Code-on-Demand improves modifiability, since new features can be deployed during runtime (e.g., support for a new representation format). It also improves performance, as the server can provide code for local pre-processing before transferring the data.

As of today, code-on-demand has not been explored much in IoT systems. Aspects to consider are that either one or both nodes are constrained and might not have the resources to host or dynamically fetch and execute such code. Moreover, the origin server often has
no understanding of the actual application a mashup client realizes. Still, code-on-demand can be useful for small polyfills, e.g., to decode payloads, and potentially other features in the future.

5. Hypermedia-driven Applications

Hypermedia-driven applications take advantage of hypermedia controls, i.e., links and forms, embedded in the resource representations. A hypermedia client is a client that is capable of processing these hypermedia controls. Hypermedia links can be used to give additional information about a resource representation (e.g., the source URI of the representation) or pointing to other resources. The forms can be used to describe the structure of the data that can be sent (e.g., with a POST or PUT method) to a server, or how a data retrieval (e.g., GET) request for a resource should be formed. In a hypermedia-driven application the client interacts with the server using only the hypermedia controls, instead of selecting methods and/or constructing URIs based on out-of-band information, such as API documentation.

5.1. Motivation

The advantage of this approach is increased evolvability and extensibility. This is important in scenarios where servers exhibit a range of feature variations, where it’s expensive to keep evolving client knowledge and server knowledge in sync all the time, or where there are many different client and server implementations. Hypermedia controls serve as indicators in capability negotiation. In particular, they describe available resources and possible operations on these resources using links and forms, respectively.

There are multiple reasons why a server might introduce new links or forms:

- The server implements a newer version of the application. Older clients ignore the new links and forms, while newer clients are able to take advantage of the new features by following the new links and submitting the new forms.
- The server offers links and forms depending on the current state. The server can tell the client which operations are currently valid and thus help the client navigate the application state machine. The client does not have to have knowledge which operations are allowed in the current state or make a request just to find out that the operation is not valid.
- The server offers links and forms depending on the client’s access control rights. If the client is unauthorized to perform a
certain operation, then the server can simply omit the links and forms for that operation.

5.2. Knowledge

A client needs to have knowledge of a couple of things for successful interaction with a server. This includes what resources are available, what representations of resource states are available, what each representation describes, how to retrieve a representation, what state changing operations on a resource are possible, how to perform these operations, and so on.

Some part of this knowledge, such as how to retrieve the representation of a resource state, is typically hard-coded in the client software. For other parts, a choice can often be made between hard-coding the knowledge or acquiring it on-demand. The key to success in either case is the use in-band information for identifying the knowledge that is required. This enables the client to verify that it has all required knowledge and to acquire missing knowledge on-demand.

A hypermedia-driven application typically uses the following identifiers:

- URI schemes that identify communication protocols,
- Internet Media Types that identify representation formats,
- link relation types or resource types that identify link semantics,
- form relation types that identify form semantics,
- variable names that identify the semantics of variables in templated links, and
- form field names that identify the semantics of form fields in forms.

The knowledge about these identifiers as well as matching implementations have to be shared a priori in a RESTful system.

5.3. Interaction

A client begins interacting with an application through a GET request on an entry point URI. The entry point URI is the only URI a client is expected to know before interacting with an application. From there, the client is expected to make all requests by following links
and submitting forms that are provided in previous responses. The entry point URI can be obtained, for example, by manual configuration or some discovery process (e.g., DNS-SD [RFC6763] or Resource Directory [I-D.ietf-core-resource-directory]). For Constrained RESTful environments "/.well-known/core" relative URI is defined as a default entry point for requesting the links hosted by servers with known or discovered addresses [RFC6690].

5.4. Hypermedia-driven Design Guidance

Assuming self-describing representation formats (i.e., human-readable with carefully chosen terms or processible by a formatting tool) and a client supporting the URI scheme used, a good rule of thumb for a good hypermedia-driven design is the following: A developer should only need an entry point URI to drive the application. All further information how to navigate through the application (links) and how to construct more complex requests (forms) are published by the server(s). There must be no need for additional, out-of-band information (e.g., API specification).

For machines, a well-chosen set of information needs to be shared a priori to agree on machine-understandable semantics. Agreeing on the exact semantics of terms for relation types and data elements will of course also help the developer. [I-D.hartke-core-apps] proposes a convention for specifying the set of information in a structured way.

6. Design Patterns

Certain kinds of design problems are often recurring in variety of domains, and often re-usable design patterns can be applied to them. Also some interactions with a RESTful IoT system are straightforward to design; a classic example of reading a temperature from a thermometer device is almost always implemented as a GET request to a resource that represents the current value of the thermometer. However, certain interactions, for example data conversions or event handling, do not have as straightforward and well established ways to represent the logic with resources and REST methods.

The following sections describe how common design problems such as different interactions can be modeled with REST and what are the benefits of different approaches.

6.1. Collections

A common pattern in RESTful systems across different domains is the collection. A collection can be used to combine multiple resources together by providing resources that consist of set of (often partial) representations of resources, called items, and links to
resources. The collection resource also defines hypermedia controls for managing and searching the items in the collection.

Examples of the collection pattern in RESTful IoT systems are the CoRE Resource Directory [I-D.ietf-core-resource-directory], CoAP pub/sub broker [I-D.ietf-core-coap-pubsub], and resource discovery via ".well-known/core". Collection+JSON [CollectionJSON] is an example of a generic collection Media Type.

6.2. Calling a Procedure

To modify resource state, clients usually use GET to retrieve a representation from the server, modify that locally, and transfer the resulting state back to the server with a PUT (see Section 4.4). Sometimes, however, the state can only be modified on the server side, for instance, because representations would be too large to transfer or part of the required information shall not be accessible to clients. In this case, resource state is modified by calling a procedure (or "function"). This is usually modeled with a POST request, as this method leaves the behavior semantics completely to the server. Procedure calls can be divided into two different classes based on how long they are expected to execute: "instantly" returning and long-running.

6.2.1. Instantly Returning Procedures

When the procedure can return within the expected response time of the system, the result can be directly returned in the response. The result can either be actual content or just a confirmation that the call was successful. In either case, the response does not contain a representation of the resource, but a so-called action result. Action results can still have hypermedia controls to provide the possible transitions in the application state machine.

6.2.2. Long-running Procedures

When the procedure takes longer than the expected response time of the system, or even longer than the response timeout, it is a good pattern to create a new resource to track the "task" execution. The server would respond instantly with a "Created" status (HTTP code 201 or CoAP 2.01) and indicate the location of the task resource in the corresponding header field (or CoAP option) or as a link in the action result. The created resource can be used to monitor the progress, to potentially modify queued tasks or cancel tasks, and to eventually retrieve the result.

Monitoring information would be modeled as state of the task resource, and hence be retrievable as representation. The result -
when available - can be embedded in the representation or given as a link to another sub-resource. Modifying tasks can be modeled with forms that either update sub-resources via PUT or do a partial write using PATCH or POST. Canceling a task would be modeled with a form that uses DELETE to remove the task resource.

6.2.3. Conversion

A conversion service is a good example where REST resources need to behave more like a procedure call. The knowledge of converting from one representation to another is located only at the server to relieve clients from high processing or storing lots of data. There are different approaches that all depend on the particular conversion problem.

As mentioned in the previous sections, POST request are a good way to model functionality that does not necessarily affect resource state. When the input data for the conversion is small and the conversion result is deterministic, however, it can be better to use a GET request with the input data in the URI query part. The query is parameterizing the conversion resource, so that it acts like a look-up table. The benefit is that results can be cached also for HTTP (where responses to POST are not cacheable). In CoAP, cacheability depends on the response code, so that also a response to a POST request can be made cacheable through a 2.05 Content code.

When the input data is large or has a binary encoding, it is better to use POST requests with a proper Media Type for the input representation. A POST request is also more suitable, when the result is time-dependent and the latest result is expected (e.g., exchange rates).

6.2.4. Events as State

In event-centric paradigms such as pub/sub, events are usually represented by an incoming message that might even be identical for each occurrence. Since the messages are queued, the receiver is aware of each occurrence of the event and can react accordingly. For instance, in an event-centric system, ringing a door bell would result in a message being sent that represents the event that it was rung.

In resource-oriented paradigms such as REST, messages usually carry the current state of the remote resource, independent from the changes (i.e., events) that have lead to that state. In a naive yet natural design, a door bell could be modeled as a resource that can have the states unpressed and pressed. There are, however, a few issues with this approach. Polling is not an option, as it is highly
unlikely to be able to observe the pressed state with any realistic polling interval. When using CoAP Observe with Confirmable notifications, the server will usually send two notifications for the event that the door bell was pressed: notification for changing from unpressed to pressed and another one for changing back to unpressed. If the time between the state changes is very short, the server might drop the first notification, as Observe only guarantees only eventual consistency (see Section 1.3 of [RFC7641]).

The solution is to pick a state model that fits better to the application. In the case of the door bell - and many other event-driven resources - the solution could be a counter that counts how often the bell was pressed. The corresponding action is taken each time the client observes a change in the received representation.

In the case of a network outage, this could lead to a ringing sound 10 minutes after the bell was rung. Also including a timestamp of the last counter increment in the state can help to suppress ringing a sound when the event has become obsolete.

6.3. Server Push

Overall, a universal mechanism for server push, that is, change-of-state notifications and stand-alone event notifications, is still an open issue that is being discussed in the Thing-to-Thing Research Group. It is connected to the state-event duality problem and custody transfer, that is, the transfer of the responsibility that a message (e.g., event) is delivered successfully.

A proficient mechanism for change-of-state notifications is currently only available for CoAP: Observing resources [RFC7641]. It offers eventual consistency, which guarantees "that if the resource does not undergo a new change in state, eventually all registered observers will have a current representation of the latest resource state". It intrinsically deals with the challenges of lossy networks, where notifications might be lost, and constrained networks, where there might not be enough bandwidth to propagate all changes.

For stand-alone event notifications, that is, where every single notification contains an identifiable event that must not be lost, observing resources is not a good fit. A better strategy is to model each event as a new resource, whose existence is notified through change-of-state notifications of an index resource (cf. Collection pattern). Large numbers of events will cause the notification to grow large, as it needs to contain a large number of Web links. Blockwise transfers [RFC7959] can help here. When the links are ordered by freshness of the events, the first block can already
contain all links to new events. Then, observers do not need to retrieve the remaining blocks from the server, but only the representations of the new event resources.

An alternative pattern is to exploit the dual roles of IoT devices, in particular when using CoAP: they are usually client and server at the same time. A client observer would subscribe to events by registering a callback URI at the origin server, e.g., using a POST request and receiving the location of a temporary subscription resource as handle. The origin server would then publish events by sending POST requests containing the event to the observer. The cancellation can be modeled through deleting the subscription resource. This pattern makes the origin server responsible for delivering the event notifications. This goes beyond retransmissions of messages; the origin server is usually supposed to queue all undelivered events and to retry until successful delivery or explicit cancellation. In HTTP, this pattern is known as REST Hooks.

In HTTP, there exist a number of workarounds to enable server push, e.g., long polling and streaming [RFC6202] or server-sent events [W3C.REC-html5-20141028]. Long polling as an extension that both server and client need to be aware of. In IoT systems, long polling can introduce a considerable overhead, as the request has to be repeated for each notification. Streaming and server-sent events (in fact an evolved version of streaming) are more efficient, as only one request is sent. However, there is only one response header and subsequent notifications can only have content. There are no means for individual status and metadata, and hence no means for proficient error handling (e.g., when the resource is deleted).

7. Security Considerations

This document does not define new functionality and therefore does not introduce new security concerns. We assume that system designers apply classic Web security on top of the basic RESTful guidance given in this document. Thus, security protocols and considerations from related specifications apply to RESTful IoT design. These include:

- Transport Layer Security (TLS): [RFC5246] and [RFC6347]
- Internet X.509 Public Key Infrastructure: [RFC5280]
- HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231], etc.
- CoAP security: Section 11 of [RFC7252]
- URI security: Section 7 of [RFC3986]
IoT-specific security is mainly work in progress at the time of writing. First specifications include:

- (D)TLS Profiles for the Internet of Things: [RFC7925]

Further IoT security considerations are available in [I-D.irtf-t2trg-iot-seccons].

8. Acknowledgement

The authors would like to thank Mert Ocak, Heidi-Maria Back, Tero Kauppinen, Michael Koster, Robby Simpson, Ravi Subramaniam, Dave Thaler, Erik Wilde, and Niklas Widell for the reviews and feedback.

9. References

9.1. Normative References

[I-D.ietf-core-dev-urn]

[I-D.ietf-core-object-security]

[I-D.ietf-core-resource-directory]

9.2. Informative References

[CollectionJSON]
Amundsen, M., "Collection+JSON - Document Format", February 2013,

[I-D.handrews-json-schema-validation]

[I-D.hartke-core-apps]

[I-D.ietf-core-coap-pubsub]

[I-D.irtf-t2trg-iot-seccons]
[IANA-CoAP-media]
"CoAP Content-Formats", n.d.,
<http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats>.

[IANA-media-types]

[RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for Constrained-Node Networks", RFC 7228,
DOI 10.17487/RFC7228, May 2014,

[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol (CoAP)", RFC 7252,
DOI 10.17487/RFC7252, June 2014,

Profiles for the Internet of Things", RFC 7925,
DOI 10.17487/RFC7925, July 2016,

Appendix A. Future Work

- Interface semantics: shared knowledge among system components (URI schemes, media types, relation types, well-known locations; see core-apps)
- Unreliable (best effort) communication, robust communication in network with high packet loss, 3-way commit
- Discuss directories, such as CoAP Resource Directory
- More information on how to design resources; choosing what is modeled as a resource, etc.

Authors’ Addresses

Ari Keranen
Ericsson
Jorvas 02420
Finland

Email: ari.keranen@ericsson.com

Matthias Kovatsch
Siemens AG
Otto-Hahn-Ring 6
Munich D-81739
Germany

Email: matthias.kovatsch@siemens.com
Abstract

This document gives guidance for designing Internet of Things (IoT) systems that follow the principles of the Representational State Transfer (REST) architectural style. This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 21, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Terminology ... 3
3. Basics ... 7
 3.1. Architecture ... 7
 3.2. System design .. 8
 3.3. Uniform Resource Identifiers (URIs) 9
 3.4. Representations ... 11
 3.5. HTTP/CoAP Methods .. 11
 3.5.1. GET ... 12
 3.5.2. POST ... 12
 3.5.3. PUT ... 12
 3.5.4. DELETE ... 13
 3.5.5. FETCH ... 13
 3.5.6. PATCH ... 13
 3.6. HTTP/CoAP Status/Response Codes 14
4. REST Constraints .. 14
 4.1. Client-Server .. 15
 4.2. Stateless .. 15
 4.3. Cache .. 15
 4.4. Uniform Interface .. 16
 4.5. Layered System .. 17
 4.6. Code-on-Demand ... 18
5. Hypermedia-driven Applications 18
 5.1. Motivation .. 18
 5.2. Knowledge ... 19
 5.3. Interaction .. 20
 5.4. Hypermedia-driven Design Guidance 20
6. Design Patterns .. 20
 6.1. Collections ... 21
 6.2. Calling a Procedure ... 21
 6.2.1. Instantly Returning Procedures 21
 6.2.2. Long-running Procedures 22
 6.2.3. Conversion .. 22
 6.2.4. Events as State ... 23
 6.3. Server Push ... 23
7. Security Considerations .. 25
8. Acknowledgement .. 25
9. References ... 25
 9.1. Normative References ... 25
 9.2. Informative References 27
Appendix A. Future Work .. 29
Authors' Addresses .. 30
1. Introduction

The Representational State Transfer (REST) architectural style [REST] is a set of guidelines and best practices for building distributed hypermedia systems. At its core is a set of constraints, which when fulfilled enable desirable properties for distributed software systems such as scalability and modifiability. When REST principles are applied to the design of a system, the result is often called RESTful and in particular an API following these principles is called a RESTful API.

Different protocols can be used with RESTful systems, but at the time of writing the most common protocols are HTTP [RFC7230] and CoAP [RFC7252]. Since RESTful APIs are often simple and lightweight, they are a good fit for various IoT applications. The goal of this document is to give basic guidance for designing RESTful systems and APIs for IoT applications and give pointers for more information.

Design of a good RESTful IoT system has naturally many commonalities with other Web systems. Compared to other systems, the key characteristics of many IoT systems include:

- need to accommodate for constrained devices, so with IoT, REST is not only used for scaling out (large number of clients on a web server), but also for scaling down (efficient server on constrained node)
- data formats, interaction patterns, and other mechanisms that minimize, or preferably avoid, the need for human interaction
- preference for compact and simple data formats to facilitate efficient transfer over (often) constrained networks and lightweight processing in constrained nodes
- the usually large number of endpoints can not be updated simultaneously, yet the system needs to be able to evolve in the field without long downtimes

2. Terminology

This section explains some of the common terminology that is used in the context of RESTful design for IoT systems. For terminology of constrained nodes and networks, see [RFC7228].

Cache: A local store of response messages and the subsystem that controls storage, retrieval, and deletion of messages in it.
Client: A node that sends requests to servers and receives responses. In RESTful IoT systems it’s common for nodes to have more than one role (e.g., both server and client; see Section 3.1).

Client State: The state kept by a client between requests. This typically includes the currently processed representation, the set of active requests, the history of requests, bookmarks (URIs stored for later retrieval), and application-specific state (e.g., local variables). (Note that this is called “Application State” in [REST], which has some ambiguity in modern (IoT) systems where the overall state of the distributed application (i.e., application state) is reflected in the union of all Client States and Resource States of all clients and servers involved.)

Content Negotiation: The practice of determining the “best” representation for a client when examining the current state of a resource. The most common forms of content negotiation are Proactive Content Negotiation and Reactive Content Negotiation.

Dereference: To use an access mechanism (e.g., HTTP or CoAP) to perform an action on a URI’s resource.

Dereferencable URI: A URI that can be dereferenced, i.e., an action can be performed on the identified resource. Not all HTTP or CoAP URIs are dereferencable, e.g., when the target resource does not exist.

Form: A hypermedia control that enables a client to change the state of a resource or to construct a query locally.

Forward Proxy: An intermediary that is selected by a client, usually via local configuration rules, and that can be tasked to make requests on behalf of the client. This may be useful, for example, when the client lacks the capability to make the request itself or to service the response from a cache in order to reduce response time, network bandwidth, and energy consumption.

Gateway: A reverse proxy that provides an interface to a non-RESTful system such as legacy systems or alternative technologies such as Bluetooth ATT/GATT. See also “Reverse Proxy”.

Hypermedia Control: A component, such as a link or a form, embedded in a representation that identifies a resource for future hypermedia interactions. If the client engages in an interaction with the identified resource, the result may be a change to resource state and/or client state.
Idempotent Method: A method where multiple identical requests with that method lead to the same visible resource state as a single such request.

Link: A hypermedia control that enables a client to navigate between resources and thereby change the client state.

Link Relation Type: An identifier that describes how the link target resource relates to the current resource (see [RFC5988]).

Media Type: A string such as "text/html" or "application/json" that is used to label representations so that it is known how the representation should be interpreted and how it is encoded.

Method: An operation associated with a resource. Common methods include GET, PUT, POST, and DELETE (see Section 3.5 for details).

Origin Server: A server that is the definitive source for representations of its resources and the ultimate recipient of any request that intends to modify its resources. In contrast, intermediaries (such as proxies caching a representation) can assume the role of a server, but are not the source for representations as these are acquired from the origin server.

Proactive Content Negotiation: A content negotiation mechanism where the server selects a representation based on the expressed preference of the client. For example, an IoT application could send a request to a sensor with preferred media type "application/senml+json".

Reactive Content Negotiation: A content negotiation mechanism where the client selects a representation from a list of available representations. The list may, for example, be included by a server in an initial response. If the user agent is not satisfied by the initial response representation, it can request one or more of the alternative representations, selected based on metadata (e.g., available media types) included in the response.

Representation: A serialization that represents the current or intended state of a resource and that can be transferred between clients and servers. REST requires representations to be self-describing, meaning that there must be metadata that allows peers to understand which representation format is used. Depending on the protocol needs and capabilities, there can be additional metadata that is transmitted along with the representation.

Representation Format: A set of rules for serializing resource state. On the Web, the most prevalent representation format is
Other common formats include plain text and formats based on JSON [RFC7159], XML, or RDF. Within IoT systems, often compact formats based on JSON, CBOR [RFC7049], and EXI [W3C.REC-exi-20110310] are used.

Representational State Transfer (REST): An architectural style for Internet-scale distributed hypermedia systems.

Resource: An item of interest identified by a URI. Anything that can be named can be a resource. A resource often encapsulates a piece of state in a system. Typical resources in an IoT system can be, e.g., a sensor, the current value of a sensor, the location of a device, or the current state of an actuator.

Resource State: A model of a resource’s possible states that is represented in a supported representation type, typically a media type. Resources can change state because of REST interactions with them, or they can change state for reasons outside of the REST model.

Resource Type: An identifier that annotates the application- semantics of a resource (see Section 3.1 of [RFC6690]).

Reverse Proxy: An intermediary that appears as a server towards the client but satisfies the requests by forwarding them to the actual server (possibly via one or more other intermediaries). A reverse proxy is often used to encapsulate legacy services, to improve server performance through caching, and to enable load balancing across multiple machines.

Safe Method: A method that does not result in any state change on the origin server when applied to a resource.

Server: A node that listens for requests, performs the requested operation and sends responses back to the clients.

Transfer protocols: In particular in IoT domain, protocols above transport layer that are used to transfer data objects and provide semantics for operations on the data.

Transfer layer: Re-usable part of the application layer used to transfer the application specific data items using a standard set of methods that can fulfill application-specific operations.

Uniform Resource Identifier (URI): A global identifier for resources. See Section 3.3 for more details.
3. Basics

3.1. Architecture

The components of a RESTful system are assigned one or both of two roles: client or server. Note that the terms "client" and "server" refer only to the roles that the nodes assume for a particular message exchange. The same node might act as a client in some communications and a server in others. Classic user agents (e.g., Web browsers) are always in the client role and have the initiative to issue requests. Origin servers always have the server role and govern over the resources they host. Simple IoT devices, such as sensors and actuators, are commonly acting as servers and exposing their physical world interaction capabilities (e.g., temperature measurement or door lock control capability) as resources. Typical IoT system client can be a cloud service that retrieves data from the sensors and commands the actuators based on the sensor information. Alternatively an IoT data storage system could work as a server where IoT sensor devices send data, in client role.

![Figure 1: Client-Server Communication](image1)

Intermediaries (such as forward proxies, reverse proxies, and gateways) implement both roles, but only forward requests to other intermediaries or origin servers. They can also translate requests to different protocols, for instance, as CoAP-HTTP cross-proxies.

![Figure 2: Communication with Forward Proxy](image2)

Reverse proxies are usually imposed by the origin server. In addition to the features of a forward proxy, they can also provide an interface for non-RESTful services such as legacy systems or alternative technologies such as Bluetooth ATT/GATT. In this case, reverse proxies are usually called gateways. This property is
enabled by the Layered System constraint of REST, which says that a client cannot see beyond the server it is connected to (i.e., it is left unaware of the protocol/paradigm change).

Nodes in IoT systems often implement both roles. Unlike intermediaries, however, they can take the initiative as a client (e.g., to register with a directory, such as CoRE Resource Directory [I-D.ietf-core-resource-directory], or to interact with another thing) and act as origin server at the same time (e.g., to serve sensor values or provide an actuator interface).

3.2. System design

When designing a RESTful system, the primary effort goes into modeling the state of the distributed application and assigning it to the different components (i.e., clients and servers). How clients can navigate through the resources and modify state to achieve their goals is defined through hypermedia controls, that is, links and forms. Hypermedia controls span a kind of a state machine where the nodes are resources and the transitions are links or forms. Clients run this state machine (i.e., the application) by retrieving representations, processing the data, and following the included hypermedia controls. In REST, remote state is changed by submitting forms. This is usually done by retrieving the current state, modifying the state on the client side, and transferring the new...
state to the server in the form of new representations - rather than
calling a service and modifying the state on the server side.

Client state encompasses the current state of the described state
machine and the possible next transitions derived from the hypermedia
controls within the currently processed representation (see
Section 2). Furthermore, clients can have part of the state of the
distributed application in local variables.

Resource state includes the more persistent data of an application
(i.e., independent of individual clients). This can be static data
such as device descriptions, persistent data such as system
configurations, but also dynamic data such as the current value of a
sensor on a thing.

It is important to distinguish between "client state" and "resource
state" and keep them separate. Following the Stateless constraint,
the client state must be kept only on clients. That is, there is no
establishment of shared information about past and future
interactions between client and server (usually called a session).
On the one hand, this makes requests a bit more verbose since every
request must contain all the information necessary to process it. On
the other hand, this makes servers efficient and scalable, since they
do not have to keep any state about their clients. Requests can
easily be distributed over multiple worker threads or server
instances. For IoT systems, this constraint lowers the memory
requirements for server implementations, which is particularly
important for constrained servers (e.g., sensor nodes) and servers
serving large amount of clients (e.g., Resource Directory).

3.3. Uniform Resource Identifiers (URIs)

An important part of RESTful API design is to model the system as a
set of resources whose state can be retrieved and/or modified and
where resources can be potentially also created and/or deleted.

Uniform Resource Identifiers (URIs) are used to indicate a resource
for interaction, to reference a resource from another resource, to
advertise or bookmark a resource, or to index a resource by search
engines.

```
foo://example.com:8042/over/there?name=ferret#nose
```

<table>
<thead>
<tr>
<th>scheme</th>
<th>authority</th>
<th>path</th>
<th>query</th>
<th>fragment</th>
</tr>
</thead>
</table>

A URI is a sequence of characters that matches the syntax defined in
[RFC3986]. It consists of a hierarchical sequence of five
components: scheme, authority, path, query, and fragment (from most significant to least significant). A scheme creates a namespace for resources and defines how the following components identify a resource within that namespace. The authority identifies an entity that governs part of the namespace, such as the server "www.example.org" in the "http" scheme. A host name (e.g., a fully qualified domain name) or an IP address, potentially followed by a transport layer port number, are usually used in the authority component for the "http" and "coap" schemes. The path and query contain data to identify a resource within the scope of the URI's scheme and naming authority. The fragment allows to refer to some portion of the resource, such as a Record in a SenML Pack. However, fragments are processed only at client side and not sent on the wire. [RFC7320] provides more details on URI design and ownership with best current practices for establishing URI structures, conventions, and formats.

For RESTful IoT applications, typical schemes include "https", "coaps", "http", and "coap". These refer to HTTP and CoAP, with and without Transport Layer Security (TLS) [RFC5246]. (CoAP uses Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These four schemes also provide means for locating the resource; using the HTTP protocol for "http" and "https", and with the CoAP protocol for "coap" and "coaps". If the scheme is different for two URIs (e.g., "coap" vs. "coaps"), it is important to note that even if the rest of the URI is identical, these are two different resources, in two distinct namespaces.

Some schemes are for URIs with main purpose as identifiers and hence are not dereferencable, e.g., the "urn" scheme can be used to construct unique names in registered namespaces. In particular the "urn:dev" [I-D.ietf-core-dev-urn] details multiple ways for generating and representing endpoint identifiers of IoT devices.

The query parameters can be used to parametrize the resource. For example, a GET request may use query parameters to request the server to send only certain kind data of the resource (i.e., filtering the response). Query parameters in PUT and POST requests do not have such established semantics and are not commonly used. Whether the order of the query parameters matters in URIs is unspecified and they can be re-ordered e.g., by proxies. Therefore applications should not rely on their order; see Section 3.3 of [RFC6943] for more details.
3.4. Representations

Clients can retrieve the resource state from an origin server or manipulate resource state on the origin server by transferring resource representations. Resource representations have a media type that tells how the representation should be interpreted by identifying the representation format used.

Typical media types for IoT systems include:

- "text/plain" for simple UTF-8 text
- "application/octet-stream" for arbitrary binary data
- "application/json" for the JSON format [RFC7159]
- "application/cbor" for CBOR [RFC7049]
- "application/exi" for EXI [W3C.REC-exi-20110310]
- "application/senml+json" and "application/senml+cbor" for Sensor Measurement Lists (SenML) data [RFC8428]

A full list of registered Internet Media Types is available at the IANA registry [IANA-media-types] and numerical media types registered for use with CoAP are listed at CoAP Content-Formats IANA registry [IANA-CoAP-media].

3.5. HTTP/CoAP Methods

Section 4.3 of [RFC7231] defines the set of methods in HTTP; Section 5.8 of [RFC7252] defines the set of methods in CoAP. As part of the Uniform Interface constraint, each method can have certain properties that give guarantees to clients.

Safe methods do not cause any state change on the origin server when applied to a resource. For example, the GET method only returns a representation of the resource state but does not change the resource. Thus, it is always safe for a client to retrieve a representation without affecting server-side state.

Idempotent methods can be applied multiple times to the same resource while causing the same visible resource state as a single such request. For example, the PUT method replaces the state of a resource with a new state; replacing the state multiple times with the same new state still results in the same state for the resource. However, the response from the server can be different when the same idempotent method is used multiple times. For example when DELETE is
used twice on an existing resource, the first request would remove
the association and return success acknowledgement whereas the second
request would likely result in error response due to non-existing
resource.

The following lists the most relevant methods and gives a short
explanation of their semantics.

3.5.1. GET

The GET method requests a current representation for the target
resource, while the origin server must ensure that there are no side-
effects on the resource state. Only the origin server needs to know
how each of its resource identifiers corresponds to an implementation
and how each implementation manages to select and send a current
representation of the target resource in a response to GET.

A payload within a GET request message has no defined semantics.

The GET method is safe and idempotent.

3.5.2. POST

The POST method requests that the target resource process the
representation enclosed in the request according to the resource’s
own specific semantics.

If one or more resources has been created on the origin server as a
result of successfully processing a POST request, the origin server
sends a 201 (Created) response containing a Location header field
(with HTTP) or Location-Path and/or Location-Query Options (with
CoAP) that provide an identifier for the resource created. The
server also includes a representation that describes the status of
the request while referring to the new resource(s).

The POST method is not safe nor idempotent.

3.5.3. PUT

The PUT method requests that the state of the target resource be
created or replaced with the state defined by the representation
enclosed in the request message payload. A successful PUT of a given
representation would suggest that a subsequent GET on that same
target resource will result in an equivalent representation being
sent.

The fundamental difference between the POST and PUT methods is
highlighted by the different intent for the enclosed representation.
The target resource in a POST request is intended to handle the enclosed representation according to the resource’s own semantics, whereas the enclosed representation in a PUT request is defined as replacing the state of the target resource. Hence, the intent of PUT is idempotent and visible to intermediaries, even though the exact effect is only known by the origin server.

The PUT method is not safe, but is idempotent.

3.5.4. DELETE

The DELETE method requests that the origin server remove the association between the target resource and its current functionality.

If the target resource has one or more current representations, they might or might not be destroyed by the origin server, and the associated storage might or might not be reclaimed, depending entirely on the nature of the resource and its implementation by the origin server.

The DELETE method is not safe, but is idempotent.

3.5.5. FETCH

The CoAP-specific FETCH method [RFC8132] requests a representation of a resource parameterized by a representation enclosed in the request.

The fundamental difference between the GET and FETCH methods is that the request parameters are included as the payload of a FETCH request, while in a GET request they’re typically part of the query string of the request URI.

The FETCH method is safe and idempotent.

3.5.6. PATCH

The PATCH method [RFC5789] [RFC8132] requests that a set of changes described in the request entity be applied to the target resource.

The PATCH method is not safe nor idempotent.

The CoAP-specific iPATCH method is a variant of the PATCH method that is not safe, but is idempotent.
3.6. HTTP/CoAP Status/Response Codes

Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are used by application to indicate whether a request was understood and satisfied, and how to interpret the answer. Similarly, Section 5.9 of [RFC7252] defines the set of Response Codes in CoAP.

The status codes consist of three digits (e.g., "404" with HTTP or "4.04" with CoAP) where the first digit expresses the class of the code. Implementations do not need to understand all status codes, but the class of the code must be understood. Codes starting with 1 are informational; the request was received and being processed. Codes starting with 2 indicate a successful request. Codes starting with 3 indicate redirection; further action is needed to complete the request. Codes starting with 4 and 5 indicate errors. The codes starting with 4 mean client error (e.g., bad syntax in the request) whereas codes starting with 5 mean server error; there was no apparent problem with the request, but server was not able to fulfill the request.

Responses may be stored in a cache to satisfy future, equivalent requests. HTTP and CoAP use two different patterns to decide what responses are cacheable. In HTTP, the cacheability of a response depends on the request method (e.g., responses returned in reply to a GET request are cacheable). In CoAP, the cacheability of a response depends on the response code (e.g., responses with code 2.04 are cacheable). This difference also leads to slightly different semantics for the codes starting with 2; for example, CoAP does not have a 2.00 response code whereas 200 ("OK") is commonly used with HTTP.

4. REST Constraints

The REST architectural style defines a set of constraints for the system design. When all constraints are applied correctly, REST enables architectural properties of key interest [REST]:

- Performance
- Scalability
- Reliability
- Simplicity
- Modifiability
- Visibility
The following sub-sections briefly summarize the REST constraints and explain how they enable the listed properties.

4.1. Client-Server

As explained in the Architecture section, RESTful system components have clear roles in every interaction. Clients have the initiative to issue requests, intermediaries can only forward requests, and servers respond requests, while origin servers are the ultimate recipient of requests that intent to modify resource state.

This improves simplicity and visibility (also for digital forensics), as it is clear which component started an interaction. Furthermore, it improves modifiability through a clear separation of concerns.

In IoT systems, endpoints often assume both roles of client and (origin) server simultaneously. When an IoT device has initiative (because there is a user, e.g., pressing a button, or installed rules/policies), it acts as a client. When a device offers a service, it is in server role.

4.2. Stateless

The Stateless constraint requires messages to be self-contained. They must contain all the information to process it, independent from previous messages. This allows to strictly separate the client state from the resource state.

This improves scalability and reliability, since servers or worker threads can be replicated. It also improves visibility because message traces contain all the information to understand the logged interactions. Furthermore, the Stateless constraint enables caching.

For IoT, the scaling properties of REST become particularly important. Note that being self-contained does not necessarily mean that all information has to be inlined. Constrained IoT devices may choose to externalize metadata and hypermedia controls using Web linking, so that only the dynamic content needs to be sent and the static content such as schemas or controls can be cached.

4.3. Cache

This constraint requires responses to have implicit or explicit cache-control metadata. This enables clients and intermediary to store responses and re-use them to locally answer future requests. The cache-control metadata is necessary to decide whether the
Cache improves performance, as less data needs to be transferred and response times can be reduced significantly. Less transfers also improves scalability, as origin servers can be protected from too many requests. Local caches furthermore improve reliability, since requests can be answered even if the origin server is temporarily not available.

Caching usually only makes sense when the data is used by multiple participants. In the IoT, however, it might make sense to cache also individual data to protect constrained devices from frequent requests of data that does not change often. Security often hinders the ability to cache responses. For IoT systems, object security may be preferable over transport layer security, as it enables intermediaries to cache responses while preserving security.

4.4. Uniform Interface

All RESTful APIs use the same, uniform interface independent of the application. This simple interaction model is enabled by exchanging representations and modifying state locally, which simplifies the interface between clients and servers to a small set of methods to retrieve, update, and delete state - which applies to all applications.

In contrast, in a service-oriented RPC approach, all required ways to modify state need to be modeled explicitly in the interface resulting in a large set of methods - which differs from application to application. Moreover, it is also likely that different parties come up with different ways how to modify state, including the naming of the procedures, while the state within an application is a bit easier to agree on.

A REST interface is fully defined by:

- URIs to identify resources
- representation formats to represent and manipulate resource state
- self-descriptive messages with a standard set of methods (e.g., GET, POST, PUT, DELETE with their guaranteed properties)
- hypermedia controls within representations

The concept of hypermedia controls is also known as HATEOAS: Hypermedia As The Engine Of Application State. The origin server
embeds controls for the interface into its representations and thereby informs the client about possible next requests. The mostly used control for RESTful systems is Web Linking [RFC5590]. Hypermedia forms are more powerful controls that describe how to construct more complex requests, including representations to modify resource state.

While this is the most complex constraints (in particular the hypermedia controls), it improves many different key properties. It improves simplicity, as uniform interfaces are easier to understand. The self-descriptive messages improve visibility. The limitation to a known set of representation formats fosters portability. Most of all, however, this constraint is the key to modifiability, as hypermedia-driven, uniform interfaces allow clients and servers to evolve independently, and hence enable a system to evolve.

For a large number of IoT applications, the hypermedia controls are mainly used for the discovery of resources, as they often serve sensor data. Such resources are "dead ends", as they usually do not link any further and only have one form of interaction: fetching the sensor value. For IoT, the critical parts of the Uniform Interface constraint are the descriptions of messages and representation formats used. Simply using, for instance, "application/json" does not help machine clients to understand the semantics of the representation. Yet defining very precise media types limits the re-usability and interoperability. Representation formats such as SenML [RFC8428] try to find a good trade-off between precision and re-usability. Another approach is to combine a generic format such as JSON with syntactic as well as semantic annotations (see [I-D.handrews-json-schema-validation] and [W3C-TD], resp.).

4.5. Layered System

This constraint enforces that a client cannot see beyond the server with which it is interacting.

A layered system is easier to modify, as topology changes become transparent. Furthermore, this helps scalability, as intermediaries such as load balancers can be introduced without changing the client side. The clean separation of concerns helps with simplicity.

IoT systems greatly benefit from this constraint, as it allows to effectively shield constrained devices behind intermediaries and is also the basis for gateways, which are used to integrate other (IoT) ecosystems.

4.6. Code-on-Demand

This principle enables origin servers to ship code to clients.

Code-on-Demand improves modifiability, since new features can be deployed during runtime (e.g., support for a new representation format). It also improves performance, as the server can provide code for local pre-processing before transferring the data.

As of today, code-on-demand has not been explored much in IoT systems. Aspects to consider are that either one or both nodes are constrained and might not have the resources to host or dynamically fetch and execute such code. Moreover, the origin server often has no understanding of the actual application a mashup client realizes. Still, code-on-demand can be useful for small polyfills, e.g., to decode payloads, and potentially other features in the future.

5. Hypermedia-driven Applications

Hypermedia-driven applications take advantage of hypermedia controls, i.e., links and forms, embedded in the resource representations. A hypermedia client is a client that is capable of processing these hypermedia controls. Hypermedia links can be used to give additional information about a resource representation (e.g., the source URI of the representation) or pointing to other resources. The forms can be used to describe the structure of the data that can be sent (e.g., with a POST or PUT method) to a server, or how a data retrieval (e.g., GET) request for a resource should be formed. In a hypermedia-driven application the client interacts with the server using only the hypermedia controls, instead of selecting methods and/or constructing URIs based on out-of-band information, such as API documentation.

5.1. Motivation

The advantage of this approach is increased evolvability and extensibility. This is important in scenarios where servers exhibit a range of feature variations, where it’s expensive to keep evolving client knowledge and server knowledge in sync all the time, or where there are many different client and server implementations. Hypermedia controls serve as indicators in capability negotiation. In particular, they describe available resources and possible operations on these resources using links and forms, respectively.

There are multiple reasons why a server might introduce new links or forms:
The server implements a newer version of the application. Older clients ignore the new links and forms, while newer clients are able to take advantage of the new features by following the new links and submitting the new forms.

The server offers links and forms depending on the current state. The server can tell the client which operations are currently valid and thus help the client navigate the application state machine. The client does not have to have knowledge which operations are allowed in the current state or make a request just to find out that the operation is not valid.

The server offers links and forms depending on the client’s access control rights. If the client is unauthorized to perform a certain operation, then the server can simply omit the links and forms for that operation.

5.2. Knowledge

A client needs to have knowledge of a couple of things for successful interaction with a server. This includes what resources are available, what representations of resource states are available, what each representation describes, how to retrieve a representation, what state changing operations on a resource are possible, how to perform these operations, and so on.

Some part of this knowledge, such as how to retrieve the representation of a resource state, is typically hard-coded in the client software. For other parts, a choice can often be made between hard-coding the knowledge or acquiring it on-demand. The key to success in either case is the use in-band information for identifying the knowledge that is required. This enables the client to verify that is has all required knowledge and to acquire missing knowledge on-demand.

A hypermedia-driven application typically uses the following identifiers:

- URI schemes that identify communication protocols,
- Internet Media Types that identify representation formats,
- link relation types or resource types that identify link semantics,
- form relation types that identify form semantics,
5.3. Interaction

A client begins interacting with an application through a GET request on an entry point URI. The entry point URI is the only URI a client is expected to know before interacting with an application. From there, the client is expected to make all requests by following links and submitting forms that are provided in previous responses. The entry point URI can be obtained, for example, by manual configuration or some discovery process (e.g., DNS-SD [RFC6763] or Resource Directory [I-D.ietf-core-resource-directory]). For Constrained RESTful environments "/.well-known/core" relative URI is defined as a default entry point for requesting the links hosted by servers with known or discovered addresses [RFC6690].

5.4. Hypermedia-driven Design Guidance

Assuming self-describing representation formats (i.e., human-readable with carefully chosen terms or processible by a formatting tool) and a client supporting the URI scheme used, a good rule of thumb for a good hypermedia-driven design is the following: A developer should only need an entry point URI to drive the application. All further information how to navigate through the application (links) and how to construct more complex requests (forms) are published by the server(s). There must be no need for additional, out-of-band information (e.g., API specification).

For machines, a well-chosen set of information needs to be shared a priori to agree on machine-understandable semantics. Agreeing on the exact semantics of terms for relation types and data elements will of course also help the developer. [I-D.hartke-core-apps] proposes a convention for specifying the set of information in a structured way.

6. Design Patterns

Certain kinds of design problems are often recurring in variety of domains, and often re-usable design patterns can be applied to them. Also some interactions with a RESTful IoT system are straightforward to design; a classic example of reading a temperature from a thermometer device is almost always implemented as a GET request to a...
A common pattern in RESTful systems across different domains is the collection. A collection can be used to combine multiple resources together by providing resources that consist of set of (often partial) representations of resources, called items, and links to resources. The collection resource also defines hypermedia controls for managing and searching the items in the collection.

Examples of the collection pattern in RESTful IoT systems are the CoRE Resource Directory [I-D.ietf-core-resource-directory], CoAP pub/sub broker [I-D.ietf-core-coap-pubsub], and resource discovery via ".well-known/core". Collection+JSON [CollectionJSON] is an example of a generic collection Media Type.

6.2. Calling a Procedure

To modify resource state, clients usually use GET to retrieve a representation from the server, modify that locally, and transfer the resulting state back to the server with a PUT (see Section 4.4). Sometimes, however, the state can only be modified on the server side, for instance, because representations would be too large to transfer or part of the required information shall not be accessible to clients. In this case, resource state is modified by calling a procedure (or "function"). This is usually modeled with a POST request, as this method leaves the behavior semantics completely to the server. Procedure calls can be divided into two different classes based on how long they are expected to execute: "instantly" returning and long-running.

6.2.1. Instantly Returning Procedures

When the procedure can return within the expected response time of the system, the result can be directly returned in the response. The result can either be actual content or just a confirmation that the call was successful. In either case, the response does not contain a representation of the resource, but a so-called action result. Action results can still have hypermedia controls to provide the possible transitions in the application state machine.
6.2.2. Long-running Procedures

When the procedure takes longer than the expected response time of the system, or even longer than the response timeout, it is a good pattern to create a new resource to track the "task" execution. The server would respond instantly with a "Created" status (HTTP code 201 or CoAP 2.01) and indicate the location of the task resource in the corresponding header field (or CoAP option) or as a link in the action result. The created resource can be used to monitor the progress, to potentially modify queued tasks or cancel tasks, and to eventually retrieve the result.

Monitoring information would be modeled as state of the task resource, and hence be retrievable as representation. The result - when available - can be embedded in the representation or given as a link to another sub-resource. Modifying tasks can be modeled with forms that either update sub-resources via PUT or do a partial write using PATCH or POST. Canceling a task would be modeled with a form that uses DELETE to remove the task resource.

6.2.3. Conversion

A conversion service is a good example where REST resources need to behave more like a procedure call. The knowledge of converting from one representation to another is located only at the server to relieve clients from high processing or storing lots of data. There are different approaches that all depend on the particular conversion problem.

As mentioned in the previous sections, POST request are a good way to model functionality that does not necessarily affect resource state. When the input data for the conversion is small and the conversion result is deterministic, however, it can be better to use a GET request with the input data in the URI query part. The query is parameterizing the conversion resource, so that it acts like a look-up table. The benefit is that results can be cached also for HTTP (where responses to POST are not cacheable). In CoAP, cacheability depends on the response code, so that also a response to a POST request can be made cacheable through a 2.05 Content code.

When the input data is large or has a binary encoding, it is better to use POST requests with a proper Media Type for the input representation. A POST request is also more suitable, when the result is time-dependent and the latest result is expected (e.g., exchange rates).
6.2.4. Events as State

In event-centric paradigms such as pub/sub, events are usually represented by an incoming message that might even be identical for each occurrence. Since the messages are queued, the receiver is aware of each occurrence of the event and can react accordingly. For instance, in an event-centric system, ringing a door bell would result in a message being sent that represents the event that it was rung.

In resource-oriented paradigms such as REST, messages usually carry the current state of the remote resource, independent from the changes (i.e., events) that have lead to that state. In a naive yet natural design, a door bell could be modeled as a resource that can have the states unpressed and pressed. There are, however, a few issues with this approach. Polling is not an option, as it is highly unlikely to be able to observe the pressed state with any realistic polling interval. When using CoAP Observe with Confirmable notifications, the server will usually send two notifications for the event that the door bell was pressed: notification for changing from unpressed to pressed and another one for changing back to unpressed. If the time between the state changes is very short, the server might drop the first notification, as Observe only guarantees only eventual consistency (see Section 1.3 of [RFC7641]).

The solution is to pick a state model that fits better to the application. In the case of the door bell – and many other event-driven resources – the solution could be a counter that counts how often the bell was pressed. The corresponding action is taken each time the client observes a change in the received representation.

In the case of a network outage, this could lead to a ringing sound 10 minutes after the bell was rung. Also including a timestamp of the last counter increment in the state can help to suppress ringing a sound when the event has become obsolete.

6.3. Server Push

Overall, a universal mechanism for server push, that is, change-of-state notifications and stand-alone event notifications, is still an open issue that is being discussed in the Thing-to-Thing Research Group. It is connected to the state-event duality problem and custody transfer, that is, the transfer of the responsibility that a message (e.g., event) is delivered successfully.

A proficient mechanism for change-of-state notifications is currently only available for CoAP: Observing resources [RFC7641]. It offers eventual consistency, which guarantees "that if the resource does
not undergo a new change in state, eventually all registered
observers will have a current representation of the latest resource
state". It intrinsically deals with the challenges of lossy
networks, where notifications might be lost, and constrained
networks, where there might not be enough bandwidth to propagate all
changes.

For stand-alone event notifications, that is, where every single
notification contains an identifiable event that must not be lost,
observing resources is not a good fit. A better strategy is to model
each event as a new resource, whose existence is notified through
change-of-state notifications of an index resource (cf. Collection
pattern). Large numbers of events will cause the notification to
grow large, as it needs to contain a large number of Web links.
Blockwise transfers [RFC7959] can help here. When the links are
ordered by freshness of the events, the first block can already
contain all links to new events. Then, observers do not need to
retrieve the remaining blocks from the server, but only the
representations of the new event resources.

An alternative pattern is to exploit the dual roles of IoT devices,
in particular when using CoAP: they are usually client and server at
the same time. A client observer would subscribe to events by
registering a callback URI at the origin server, e.g., using a POST
request and receiving the location of a temporary subscription
resource as handle. The origin server would then publish events by
sending POST requests containing the event to the observer. The
cancellation can be modeled through deleting the subscription
resource. This pattern makes the origin server responsible for
delivering the event notifications. This goes beyond retransmissions
of messages; the origin server is usually supposed to queue all
undelivered events and to retry until successful delivery or explicit
cancellation. In HTTP, this pattern is known as REST Hooks.

In HTTP, there exist a number of workarounds to enable server push,
e.g., long polling and streaming [RFC6202] or server-sent events
[W3C.REC-html5-20141028]. Long polling as an extension that both
server and client need to be aware of. In IoT systems, long polling
can introduce a considerable overhead, as the request has to be
repeated for each notification. Streaming and server-sent events (in
fact an evolved version of streaming) are more efficient, as only one
request is sent. However, there is only one response header and
subsequent notifications can only have content. There are no means
for individual status and metadata, and hence no means for proficient
error handling (e.g., when the resource is deleted).
7. Security Considerations

This document does not define new functionality and therefore does not introduce new security concerns. We assume that system designers apply classic Web security on top of the basic RESTful guidance given in this document. Thus, security protocols and considerations from related specifications apply to RESTful IoT design. These include:

- Transport Layer Security (TLS): [RFC5246] and [RFC6347]
- Internet X.509 Public Key Infrastructure: [RFC5280]
- HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231], etc.
- CoAP security: Section 11 of [RFC7252]
- URI security: Section 7 of [RFC3986]

IoT-specific security is mainly work in progress at the time of writing. First specifications include:

- (D)TLS Profiles for the Internet of Things: [RFC7925]

Further IoT security considerations are available in [I-D.irtf-t2trg-iot-seccons].

8. Acknowledgement

The authors would like to thank Mert Ocak, Heidi-Maria Back, Tero Kauppinen, Michael Koster, Robby Simpson, Ravi Subramaniam, Dave Thaler, Erik Wilde, and Niklas Widell for the reviews and feedback.

9. References

9.1. Normative References

[I-D.ietf-core-dev-urn]

[I-D.ietf-core-object-security]
[I-D.ietf-core-resource-directory]

9.2. Informative References

[I-D.handrews-json-schema-validation]

[I-D.hartke-core-apps]

[I-D.ietf-core-coap-pubsub]

[I-D.irtf-t2trg-iot-seccons]

[IANA-CoAP-media]

[IANA-media-types]

Appendix A. Future Work

- Interface semantics: shared knowledge among system components (URI schemes, media types, relation types, well-known locations; see core-apps)
- Unreliable (best effort) communication, robust communication in network with high packet loss, 3-way commit
- Discuss directories, such as CoAP Resource Directory
- More information on how to design resources; choosing what is modeled as a resource, etc.
Authors’ Addresses

Ari Keranen
Ericsson
Jorvas 02420
Finland
Email: ari.keranen@ericsson.com

Matthias Kovatsch
Siemens AG
Otto-Hahn-Ring 6
Munich D-81739
Germany
Email: matthias.kovatsch@siemens.com

Klaus Hartke
Ericsson
Torshamnsgatan 23
Stockholm SE-16483
Sweden
Email: klaus.hartke@ericsson.com