6LOWPAN Selective Fragment
Recovery

P. Thubert

IETF 104

Prague

Features

* New formats for the fragment header

» Selective Fragments Recovery
— Expects but does not depend on IOD

 Window-based Flow Control
— ACK at the end of the window

* Explicit Congestion Notification
— ECN flag echoed to the source

 Explicit Signaling to both set up and clean up
— Including Abort and Fin

Status

« Draft -02

— Limited reorg, terminology first

— Discussion on the needed slack in the first fragment and
now to compute it

— Discussion modifying the first fragment which impacts
the datagram size

— New formats

About Slack in the 1st frag.

“For instance, 1f the IID of the source
IPve address 1s elided by the originator,
then 1t MUST compute the fragment size as 1f
the MTU was 8 bytes less. This way, the
next hop can restore the source IID to
the first fragment without 1mpacting the
second fragment.”

About changing the size for 1st frag.

“If the size of the first fragment 1is
modified, then the intermediate node MUST
adapt the datagram size to reflect that
difference. The intermediate node MUST also
save the difference of datagram size of the
first fragment in the VRB and add it to the
datagram size and to the fragment offset of
all the subsequent fragments for that
datagram.

New formats

Moved 8 bits from datagram_tag: 5 to fragment_offset, 3 to sequence, to accomodate large MTUs

1 2 3 1 2 3
0123456789012 34506789012345%6789°01 012345678901 234567890123456e789°01
+—F—+—+—F—+—+—+—+—+—+ +—4+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+
/111 0100 X|E|fragment size] datagram tag | [T 1 1 01 0 0O|E] datagram tag |
ottt mt— b m b — b — b m b — b — b — o — b — b — b — b — b m b m bt bt — bt — b — b= b — b — b — =+ R S R
|X| sequence| fragment size | fragment offset |

| sequence | fragment offset |
+—F+—+—+—+—F+—+—+—+—+—+—+—+—+

R s e e e e L L a1
X set == Ack Requested

Figure 2: RFRAG Dispatch type and Header X set == Ack Requested

X: 1 bit; Ack Requested: when set, the sender requires an RFRAG Figure 2: RFRAG Dispatch type and Header

Acknowledgment from the receiver.

Rfrag

Rfrag Ack

3 1 2 3
0123456789 0123456789012345678901 012345667869 0123456789012345¢6782901

+—t—t—t—t—t—F—F—t—F—t—F—F—t—F—+—F—F—F+—F—+—F—F+—+—+ +—t—t—t—Ft—t—t—F—t—F—t—t—F—+—+—+—+
(111 0101 Y] datagram tag | [T1 1 010 1Y| datagram tag |
bt — bttt =t — bt —F— bt =t —F—F—t—F =t ——t—F—F— =+ —+ bt — b — bt —F— b=t —F b=t =ttt ==t =t —F—F ==t —F =t — =+ —+
| RFRAG Acknowledgment Bitmap (32 bits) | | RFRAG Acknowledgment Bitmap (32 bits) |
+—t—t—t—d—t—t—F—t—d—F—F—F—t—d—F—t—F—t—F—F—t—F—t—F—F—F—F—F+—F—F—+—+ t—t—t—t—F—t—t—F—t—F—t—F—F—t—F—t—F—F—t—F—F—F—F—F—F—F—F—F—F—F—+—+—+

6

1 2

Next Steps

 Ready for WGLC...

Past IETF presentation

P.Thubert
IETF

Prague

History

- Presented 6lo Fragmentation issues in Chicago
— In appendix of this slideware
— Mostly issues for route-over
— Summarized in next slide

* Work on fragmentation at LPWAN
— As part of the SCHC IP/UDP draft

— Optional: Windowing/individual retry of fragments
— Does not need to support multihop

Context

- TCP rarely used,
— Pro is MSS to avoid fragmentation

* 6LoWPAN applications handle their reliability
— UDP
— to get exactly what they need
— They also expect very long round trips.
* Time gained by streamlining fragments is available

for retries without a change in the application
behavior.

6lo Route-Over fragmentation issues

 Recomposition at every L3 hop
— Cause latency and buffer overutilization

« Uncontrolled sending of multiple fragments
— Interferences in single frequency meshes

* Fragment flows interfere with one another
— Buffer bloat / congestion loss

* Loss locks buffers on receliver till time out
— Readily observable, led to RFC 7388

6lo Fragmentation regs

* Provide Fragment Forwarding

— There are pitfalls, better specify one method

— E.g. datagram tag switching ala MPLS

— Stateful => state maintenance protocol
* Provide pacing/windowing capabilities

— Mesh awareness? (propagation delay, nb hops)
* Provide fragment reliability

— Individual ack/retry/reset, e.g. ala SCHC

* Provide congestion control for multinop
— E.g. ECN

Path Forward

 Solutions exist (as shown by draft-thubert..):

1. Produce a problem statement at 6lo
- Based on this slideware

2. Form a design team
— Need TSV skills to solve the problem
— Also MPLS and radio skill, CoAP, CoCoA

3. Find a host WG and produce a std track
—at TSVWG?

4. Also recommendations for application design

APPENDIX

14

Backup slides
The problem with fragments
In 6lo mesh networks

P.Thubert
IETF 99

Prague

draft-thubert-6lo-forwarding-fragments-04

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-04

Recomposition at every hop

« Basic implementation of RFC 4944 would cause
reassembly at every L3 hop

* In a RPL/ 6TiISCH network that's every radio hop

* In certain cases, this blocks most (all?) of the buffers
— Buffer bloat

* And augments latency dramatically

Research was conducted to forward fragments at L3.

Early fragment forwarding issues #1

* Debugging issues due to Fragments led to RFC 7388
* Only one full packet buffer

 Blocked while timing out lost fragments

* Dropping all packets in the meantime

» Arguably there could be implementation tradeoffs
— but there is no good solution with RFC4944,
— either you have short time outs and clean up too early,
— or you lose small packets in meantime

Early fragment forwarding issues #1 c'd

* Need either to abandon fragmented packet
e or discover loss and retry quickly, both need signaling

« Solution is well-know:
— selective acknowledgement
— reset

* Requires new signaling

=> Implementation recommendations are not sufficient

Early fragment forwarding issues #2

* On a single channel multihop network (not 6TISCH):
Next Fragment interferes with previous fragment

* No end-to-end feedback loop

* Blind throttling can help
* New signaling can be better

AN
A B C

Deeper fragment forwarding issues #3

* More Fragments pending than hops causes bloat
* No end-to-end feedback loop for pacing

* Best can do is (again) blind throttling

 Solution is well-known, called dynamic windowing
* Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #4

« Multiple flows through intermediate router cause
congestions

* No end-to-end feedback for Congestion Notification.
* Blind throttling doesn’t even help there

* Fragments are destroyed, end points time out,
packets are retried, throughput plummets

» Solution is well-known, called ECN
* Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #5

* Route over => Reassembly at every hop creates a
moving blob per packet

* Changes the statistics of congestion in the network
* Augments the latency by preventing streamlining
* More In next slides

=> Need to forward fragments even in route over case

Current behaviour

Il
110
1(1)
(1)

110
10)
(1)

(1) |
(1) [
(1) 1l

Window of 1 fragment

Il
110

I
10)

()

()

(1)

()

(1)

(1)

(1)

Streamlining with larger window

110
[

10)

(1)

()

(1)

(1)

(1)

(1)

(1)

Even Deeper fragment forwarding issues #6

 Original datagram tag Is misleading

 Tag Is unique to the 6LoWPAN end point

* Not the IP source, not the MAC source

« 2 different flows may have the same datagram tag
* Implementations storing FF state can be confused
 Solution is well known, called label swapping

* An easy trap to fall in, need IETF recommendations

Datagram Tag Confusion

\ /

7 | Fragmentation
& @ L= &
IC @ @ SO pic

EatI;gram tag 5 %@E (<)) = DatagAr\flalm fagk5
w I =

. &

Confused <) @
< @&

Even Deeper fragment forwarding issues #6

* Forwarding Fragments requires state in intermediate
nodes

 This state has the same time out / cleanup issues as
In the receiver end node
« Solution is well known: Proper cleanup requires

— signaling that the flow is completely received
— orreset

Conclusion

* People are experiencing trouble that was predictable
from the art of Internet and Switching technologies

* The worst of it (collapse under load and hard-to-
debug misdirected fragments) was not even seen yet
but Is predictable

« Some Issues can be alleviated by Informational
recommendations

* Some require a more appropriate signaling
« Recommendation is rethink 6LoWPAN fragmentation

draft-thubert-6lo-forwarding-fragments

* Provides Label Switching

» Selective Ack

» Pacing and windowing + ECN

* Flow termination indication and reset

* Yes It Is transport within transport (usually UDP)

* Yes that is architecturally correct because fragment
re-composition is an endpoint function

« And No splitting the draft is not appropriate, because
the above functionalities depend on one another.

RFC 4944: 6LoWPAN
Fragmentation

Datagram Size 1st fragment

Datagram Tag

Datagram Size Next fragments

Datagram Tag

Datagram Offset

Size and offset from uncompressed form

1-hop technology

draft-thubert-6lo-forwarding-
fragments

Datagram Offset

Datagram Tag

Sequence 0..31

Datagram Size

Datagram Tag

Ack bitmap

Ack bitmap

fragment
X <= ack request

Size and offset from
compressed form

ACK
Y <= ECN

multi-hop technology

Hop #4

Hop #3

Hop #3

Hop #2

Hop #1

—_—

Current behaviour

Il
110
1(1)
(1)

110
10)
(1)

(1) |
(1) [
(1) 1l

Single fragment

110

[0

[

(1) |

| 0

|

(1) |
(N

(1)

(1)

(1)

Streamlining

Il
110

I(1)

(1)

()

(1)

(1)

(1)

(1)

(1)

