
1

6LoWPAN Selective Fragment

Recovery

• P. Thubert

IETF 104

Prague

Features

• New formats for the fragment header

• Selective Fragments Recovery

– Expects but does not depend on IOD

• Window-based Flow Control

– ACK at the end of the window

• Explicit Congestion Notification

– ECN flag echoed to the source

• Explicit Signaling to both set up and clean up

– Including Abort and Fin

Status

• Draft -02

– Limited reorg, terminology first

– Discussion on the needed slack in the first fragment and

how to compute it

– Discussion modifying the first fragment which impacts

the datagram size

– New formats

About Slack in the 1st frag.

“For instance, if the IID of the source

IPv6 address is elided by the originator,

then it MUST compute the fragment_size as if

the MTU was 8 bytes less. This way, the

next hop can restore the source IID to

the first fragment without impacting the

second fragment.”

4

About changing the size for 1st frag.

“If the size of the first fragment is

modified, then the intermediate node MUST

adapt the datagram_size to reflect that

difference. The intermediate node MUST also

save the difference of datagram_size of the

first fragment in the VRB and add it to the

datagram_size and to the fragment_offset of

all the subsequent fragments for that

datagram.
5

New formats

6

Rfrag_Ack

Rfrag

Moved 8 bits from datagram_tag: 5 to fragment_offset, 3 to sequence, to accomodate large MTUs

Next Steps

• Ready for WGLC…

7

8

Past IETF presentation

IETF

Prague

P.Thubert

History

• Presented 6lo Fragmentation issues in Chicago

– In appendix of this slideware

– Mostly issues for route-over

– Summarized in next slide

• Work on fragmentation at LPWAN

– As part of the SCHC IP/UDP draft

– Optional: Windowing/individual retry of fragments

– Does not need to support multihop

Context

• TCP rarely used,

– Pro is MSS to avoid fragmentation

• 6LoWPAN applications handle their reliability

– UDP

– to get exactly what they need

– They also expect very long round trips.

• Time gained by streamlining fragments is available
for retries without a change in the application
behavior.

6lo Route-Over fragmentation issues

• Recomposition at every L3 hop

– Cause latency and buffer overutilization

• Uncontrolled sending of multiple fragments

– Interferences in single frequency meshes

• Fragment flows interfere with one another

– Buffer bloat / congestion loss

• Loss locks buffers on receiver till time out

– Readily observable, led to RFC 7388

6lo Fragmentation reqs

• Provide Fragment Forwarding

– There are pitfalls, better specify one method

– E.g. datagram tag switching ala MPLS

– Stateful => state maintenance protocol

• Provide pacing/windowing capabilities

– Mesh awareness? (propagation delay, nb hops)

• Provide fragment reliability

– individual ack/retry/reset, e.g. ala SCHC

• Provide congestion control for multihop

– E.g. ECN

Path Forward

• Solutions exist (as shown by draft-thubert..):

1. Produce a problem statement at 6lo

- Based on this slideware

2. Form a design team

– Need TSV skills to solve the problem

– Also MPLS and radio skill, CoAP, CoCoA

3. Find a host WG and produce a std track

– at TSVWG?

4. Also recommendations for application design

APPENDIX

14

15

Backup slides

The problem with fragments

in 6lo mesh networks

IETF 99

Prague

P.Thubert

draft-thubert-6lo-forwarding-fragments-04

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-04

Recomposition at every hop

• Basic implementation of RFC 4944 would cause

reassembly at every L3 hop

• In a RPL / 6TiSCH network that’s every radio hop

• In certain cases, this blocks most (all?) of the buffers

– Buffer bloat

• And augments latency dramatically

Research was conducted to forward fragments at L3.

Early fragment forwarding issues #1

• Debugging issues due to Fragments led to RFC 7388

• Only one full packet buffer

• Blocked while timing out lost fragments

• Dropping all packets in the meantime

• Arguably there could be implementation tradeoffs

– but there is no good solution with RFC4944,

– either you have short time outs and clean up too early,

– or you lose small packets in meantime

Early fragment forwarding issues #1 c’d

• Need either to abandon fragmented packet

• or discover loss and retry quickly, both need signaling

• Solution is well-know:

– selective acknowledgement

– reset

• Requires new signaling

=> Implementation recommendations are not sufficient

Early fragment forwarding issues #2

• On a single channel multihop network (not 6TiSCH):

Next Fragment interferes with previous fragment

• No end-to-end feedback loop

• Blind throttling can help

• New signaling can be better

2 1

Deeper fragment forwarding issues #3

• More Fragments pending than hops causes bloat

• No end-to-end feedback loop for pacing

• Best can do is (again) blind throttling

• Solution is well-known, called dynamic windowing

• Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #4

• Multiple flows through intermediate router cause

congestions

• No end-to-end feedback for Congestion Notification.

• Blind throttling doesn’t even help there

• Fragments are destroyed, end points time out,

packets are retried, throughput plummets

• Solution is well-known, called ECN

• Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #5

• Route over => Reassembly at every hop creates a

moving blob per packet

• Changes the statistics of congestion in the network

• Augments the latency by preventing streamlining

• More in next slides

=> Need to forward fragments even in route over case

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 I(I) II

T=3 (I) III

T=4 II(I) I

T=5 I(I) II

T=6 (I) III

T=7 II(I) I

T=8 I(I) II

T=9 (I) III

Current behaviour

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 II (I) I

T=4 I(I) I I

T=5 I (I) I I

T=6 I (I) II

T=7 (I) I II

T=8 (I) I II

T=9 (I) III

Window of 1 fragment

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 I(I) I (I) I

T=4 I (I) I I

T=5 (I) I (I) II

T=6 (I) I II

T=7 (I) III

T=8

T=9

Streamlining with larger window

Even Deeper fragment forwarding issues #6

• Original datagram tag is misleading

• Tag is unique to the 6LoWPAN end point

• Not the IP source, not the MAC source

• 2 different flows may have the same datagram tag

• Implementations storing FF state can be confused

• Solution is well known, called label swapping

• An easy trap to fall in, need IETF recommendations

Datagram Tag Confusion

Fragmentation

Also pick

Datagram tag 5

Pick

Datagram tag 5

Confused

Even Deeper fragment forwarding issues #6

• Forwarding Fragments requires state in intermediate

nodes

• This state has the same time out / cleanup issues as

in the receiver end node

• Solution is well known: Proper cleanup requires

– signaling that the flow is completely received

– or reset

Conclusion

• People are experiencing trouble that was predictable

from the art of Internet and Switching technologies

• The worst of it (collapse under load and hard-to-

debug misdirected fragments) was not even seen yet

but is predictable

• Some issues can be alleviated by Informational

recommendations

• Some require a more appropriate signaling

• Recommendation is rethink 6LoWPAN fragmentation

draft-thubert-6lo-forwarding-fragments

• Provides Label Switching

• Selective Ack

• Pacing and windowing + ECN

• Flow termination indication and reset

• Yes it is transport within transport (usually UDP)

• Yes that is architecturally correct because fragment

re-composition is an endpoint function

• And No splitting the draft is not appropriate, because

the above functionalities depend on one another.

3
1

RFC 4944: 6LoWPAN

Fragmentation

1 0 0

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

Next fragments1 0

Datagram Offset

1 0 0

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

1st fragment1 0 Datagram Size

Datagram Size

Size and offset from uncompressed form

1-hop technology

3
2

draft-thubert-6lo-forwarding-

fragments

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

ACK

Y <= ECN

Ack bitmap Ack bitmap

1 0 Y1 1 101

1 0 X

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

fragment

X <= ack request

1 1 Datagram Offset

Sequence 0..31 Datagram Size

001

…

Size and offset from

compressed form

……
multi-hop technology

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 I(I) II

T=3 (I) III

T=4 II(I) I

T=5 I(I) II

T=6 (I) III

T=7 II(I) I

T=8 I(I) II

T=9 (I) III

Current behaviour

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 II (I) I

T=4 I(I) I I

T=5 I (I) I I

T=6 I (I) II

T=7 (I) I II

T=8 (I) I II

T=9 (I) III

Single fragment

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 I(I) I (I) I

T=4 I (I) I I

T=5 (I) I (I) II

T=6 (I) I II

T=7 (I) III

T=8

T=9

Streamlining

