IPv6 Mesh over Bluetooth(R) Low Energy using IPSP

draft-ietf-6lo-blemesh-05

Carles Gomez, S.M. Darroudi
Universitat Politècnica de Catalunya
Teemu Savolainen
DarkMatter
Michael Spörk
Graz University of Technology

IETF 104 – Prague, March 2019
Status

• WGLC on draft-ietf-6lo-blemesh-04
 – Comments received (thanks!)
 • Bilhanan Silverajan
 • Rahul Jadhav
 • Pascal Thubert

• draft-ietf-6lo-blemesh-05
 – Addresses the WGLC comments

• Authors believe that the document is now ready for the next step
Updates in -05 (I/III)

• Terminology
 – “IPv6 mesh over Bluetooth LE links”
 • Consistently throughout the document

• Abstract and Introduction
 – Clarify that the document is not sufficient by itself to enable IPv6 mesh over BLE
 • The document specifies the mechanisms that are needed...
 • The routing protocol is not specified

• Section 2. Bluetooth LE networks and IPSP
 – Bluetooth 4.1 has now been deprecated
 – Bluetooth 4.2 added as a normative reference
 • Bluetooth 4.1 now as an informative reference
Updates in -05 (II/III)

• Section 3.1. Protocol stack
 – Added MTU and fragmentation discussion
 • Bluetooth 4.2: “link layer” MTU is 247 bytes
 • Bluetooth 4.0 and 4.1: “link layer” MTU was 23 bytes
 • L2CAP fragmentation and reassembly used
 • No need to use 6LoWPAN fragmentation functionality
 • IPSP allows negotiating link layer connections with an MTU of 1280 bytes for IPv6
Updates in -05 (III/III)

• Section 3.3. Neighbor Discovery
 – RFC 6775 and RFC 8505
 • EARO (formerly, ARO)
 • ROVR
 – By default, based on the Bluetooth device address
 – Optionally, a crypto ID MAY be used (draft-ietf-6lo-ap-nd)
 • “As per RFC 8505, a 6LN MUST NOT register its link-local address”

• Section 5. Security considerations
 – Address theft and impersonation for Bluetooth device address-based ROVR
 – draft-ietf-6lo-ap-nd protects against such attacks
Questions/Comments?

Carles Gomez, S. M. Darroudi
Universitat Politècnica de Catalunya

Teemu Savolainen
DarkMatter

Michael Spörk
Graz University of Technology