IPv6 Minimum Path MTU
Hop-by-Hop Option

<draft-hinden-6man-mtu-option-01>

Bob Hinden
Gorry Fairhurst

IETF104 Prague
Background

- Current RFC8201 PMTUD isn’t working well.

- This hop-by-hop option came from the idea that it will be more reliable for the Destination to send Path MTU feedback to the Source.
 - Better trust relationship than RFC8201 PMTUD.

- It may not work in all places [RF7872] etc., but we suggest it can help some places.
Changes Since IETF103

- draft-hinden-6man-mtu-option-01 (2019-March-11)
 - Changed requested status from Standards Track to Experimental to use an experimental option type (11110). Removed request for IANA Option assignment.
 - Added Section 2 "Motivation and Problem Solved" section to better describe the purpose of this document.
 - Added Appendix A describing planned experiments and how the results will be measured (more next revision).
 - Editorial changes.
Motivation

- PMTUD [RFC8201] doesn’t work well in the Internet
 - Nodes in the middle of the network may not send a ICMP Packet Too Big message.
 - Path often doesn’t/can’t return the PTB message to a sender.
 - Nodes mostly rely on MSS for TCP and default to 1280 for UDP.

- Problematic for transport encapsulations and tunneling that reduce available MTU.

- Limits usefulness of 10G and 100G Ethernet.
 - 1280 octet packets need 977K pps at 10G.
 - 9000 octet packets need 129K pps at 10G.
Investigating Approaches to Provide MTU Feedback

- Endpoint PTB message to sent to source
- Reflection of value in a HBH option on the same flow
- Reflection of value within a transport parameter for the flow
Planned Experiments

- Experiments needed:
 - How likely is it that an IPv6 H-B-H option will be forwarded to the remote node?
 - How likely is it that a PTB message from a remote node is returned to the source?
 - How easy is this to implement?
 - How much support is there for jumbo frames?

- … More questions will emerge as we do this work!
Goals

- Learn by testing / experimentation if this provides enough value to justify deployment.

- Understand how to integrate this as a part of a framework that is robust to loss or probes e.g. (D)PLPMTUD.
IETF 104 Hackathon

- Initial Linux host implementation (Tom Herbert, Vladimir)
- Initial BSD host implementation (Tom Jones)
- VPP Router implementation (Ole Troan)
- P4 router implementation (Luuk Hendriks, Ronald Vanderpol)
- Wireshark dissector (Bob Hinden)
New Version of HBH Option

Option Type: BB

C 1 Option data can change en route to the packet's final destination.

TTTT 11110 Experimental Option Type from [IANA-HBH].

Length: 4 Note the size of the each value field in Option Data field supports Path MTU values from 0 to 65,535 octets.

Value 1: n The Reported PMTU in octets, reflecting the smallest link MTU that the packet experienced across the path.

R n Return bit. Set by the source to signal the destination that it should include the received minimum MTU in Value 2.

Value 2: n The returned minimum MTU from from Value 1 divided by two (shift right one bit).
Wireshark

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.003583</td>
<td>3::1111</td>
<td>3::1111</td>
<td>MTUOP...</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.003902</td>
<td>3::1111</td>
<td>3::1111</td>
<td>MTUOP...</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

- Frame 10: 94 bytes on wire (752 bits), 94 bytes captured (752 bits)
- Internet Protocol Version 6, Src: 3::1111, Dst: 3::1111

MTU Hop by Hop Option Data

- Option Next Header: 17
- Option Extension Length: 0
- Option Type: 0x3e
- Option Payload Length: 4
- Minimum PMTU: 9000
- 1... = Respond Flag: True
- Returned Minimum PMTU: 0
Next Steps

- Continue experiments
 - Please talk to us

- We hope to have some data by next IETF meeting
QUESTIONS / COMMENTS?