Authors: Marco Tiloca
Simon Duquennoy
Gianluca Dini
Recap

• An external adversary can easily and efficiently:
 • Derive the communication pattern of a victim node
 • Selectively jam the exact cells of the victim’s schedule
 • The attack is effective, stealthy, targeted and low-power

• Preventive solution against selective jamming
 • Efficient pseudo-random shuffling of cells, at each slotframe
 • Agnostic of the specific scheduling algorithm
 • No communication overhead (only local computation)

• Resulting new schedule
 • Collision-free and consistent
 • Unpredictable to the adversary
Updates from -00 (1/3)

• Attack importance
 • Selective jamming of the exact victim’s cells
 • High effectiveness with minimal exposure (i.e., low risk of detection)
 • High energy efficiency, i.e. can be carried out on battery
 • More convenient than a wide-band constant jamming

• Adversary model
 • External, i.e. not controlling any node in the network
 • Can target one or many nodes in the network
 • Will target specific nodes and their traffic, i.e. not the network as a whole
Updates from -00 (2/3)

• Solution limitations
 • Intended to operate on slotframes used only for data transmission
 • NOT intended to operate on slotframes used (also) for joining traffic

• Keep the joining process feasible and deterministic
 • We can’t shuffle slotframes with a “minimal cell” or other randez-vous cells
 • Cells for joining are practically in separate slotframes, e.g. Slotframe 0

• The adversary can still:
 • Jam the “minimal cell” or other randez-vous cells
 • Jeopardize the joining process altogether
Updates from -00 (3/3)

- Provisioning of the permutation keys
 - MAY happen within CoJP in the Minimal Security Framework
 - Aligned with the latest format of the CoJP Join Response message

- New parameters
 - Permutation Key Set (1 or 2 keys)
 - Permutation Cipher

- Error handling is described

```
Configuration = {
  ? 2 : [ +Link_Layer_Key ], ; link-layer key set
  ? 3 : Short_Identifier, ; short identifier
  ? 4 : bstr, ; JRC address
  ? 6 : [ *bstr ], ; blacklist
  ? 7 : uint, ; join rate
  ? TBD : [ +Permutation_Key ], ; permutation key set
  ? TBD : Permutation_Cipher ; permutation cipher
}

Permutation_Key = ( key_value : bstr )
```
Summary and next steps

• Addressed comments and actions from IETF 103
 • Attack importance and adversary model
 • Limitations of the solution
 • Key provisioning in the Join Response of CoJP

• Next steps
 • Need for document reviews – Anyone interested?
Thank you!
Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling