Recent changes to Babel-HMAC
draft-ietf-babel-hmac-04

Juliusz Chroboczek

28 March 2019

/.

Babe

1/9



Background

Babel-HMAC is an authentication mechanism for the
Babel routing protocol.

Joint work with Clara D6 and Weronika Kotodziejak,
based on the work of Denis Ovsienko (RFC 7298), with
input from many people, notably Markus Stenberg.

— protects both unicast and multicast;

- invulnerable to replay;
— easy to implement:

- no global clocks;

- no persistent storage.
- algorithm aqility:

- MAC algorithm;

- size of indices
- size of challenge nonces.

2/9



Recent changes to the protocol

Babel-HMAC was designed in public, in what was
described by an interested onlooker as a open and
robust standardisation process.

Except for two recent changes:
- changed the mandatory to implement MAC
algorithms :
- MUST implement SHA-256;
- SHOULD implement BlakeZ2s;
— must discard cryptographic state after a bounded
time with no traffic.

3/9



Change to MTI MAC algorithms

RFC 7298 had two MTI algorithms:

- SHA-1;

- RIPEMD-160.
SHA-1 is not recommended in new protocols.
RIPEMD-160 was described as “somewhat niche”.
In draft draft-ietf-babel-hmac-04:

— MUST implement SHA-256;

— SHOULD implement Blake2s.

Babeld and BIRD implement both. So should you.

4/9



The hash function doesn’t matter

Babel-HMAC is threatened by first preimage attacks,
not by collision attaks.
“Any” hash function is strong enough.

Babel-HMAC only protects control packets.
“Any” hash function is fast enough.

SHA-256 is overkill for our needs, but it doesn’t matter.

5/9



Blake2s

SHA-256 is overkill, but it doesn’t matter — it’s fast
enough.

Yet, some people concerned about slow software
routers with no hardware assist for SHA-256. They
request a faster option.
Toke and Dave suggested Blake2s:
- blazingly fast in software;
- 128-bit length, 64-bit strength;
— integrates keying (no need for HMAC construction);
- based on similar principles as SHA-256.

Babeld and BIRD implement both. So should you.

6/9



Delayed packets

Babel-HMAC is invulnerable to replay.
(We haven’t proved that yet.)

It is vulnerable to packets being delayed, e.g. by an
attacker located at a network switch. No known
attacks, but it makes us nervous.

Let’s bound the amount of time a packet can be
delayed by.

7/9



Bounding the delay

A node MAY discard its per-peer cryptographic state at
any time, at the cost of one RTT of lost packets.

Doing that invalidates any previously sent packets that
have been delayed by the network.

New requirement:

A node MUST ensure that, in the absence of correctly
authentified network traffic, cryptographic state is
discarded after a bounded time. The mechanism is left
unspecified, but the draft contains implementation
advice.

8/9



Conclusion

Two (hopefully non-controversial) recent changes:
- changed the mandatory to implement MAC
algorithms :
- MUST implement SHA-256;
— SHOULD implement Blake2s;
- must discard cryptographic state after a bounded
time with no traffic.

9/9



