
Delay-based routing for the Babel
protocol

draft-jonglez-babel-rtt-extension-02

Juliusz Chroboczek
Joint work with Baptise Jonglez

28 March 2019

1/16

Problem statement

Nexedi have been running a global overlay network
between datacenters:

Paris

Lille

Marseille

Tokyo

What happens when the Lille-Marseille link is down?

In 1/2 of the cases, unextended Babel chose to reroute
the traffic through Tokyo.

Nexedi were not happy.

2/16

Solution: use RTT

In 1/2 of the cases, unextended Babel chooses to
reroute the traffic through Tokyo.
That’s not good.

Initial suggestion: a GPS in every data center.
That’s reportedly not practical.

Idea: measure RTT (two-way delay) and derive a metric
from that. But

– the natural way to measure RTT requires
asymmetric, synchronous interaction; Babel is a
symmetric, asynchronous protocol;

– using RTT as input to a routing metric causes a
(negative) feedback loop, which may lead to
oscillations.

3/16

Measuring RTT (1)
The naive algorithm

t

to
The natural way to measure RTT is
asymmetric and synchronous.

Client says “ping!”.
Server replies “pong!” as fast as possible.

RTT = t − to.

Babel is a symmetric, asynchronous algorithm.
The naive “ping” algorithm is a poor fit for Babel.

4/16

Measuring RTT (2)
Mills’ algorithm

t

to

tr
tt

Mills’ algorithm, used in HELLO and NTP.

The remote peer sends a packet with:
– to, the origin timestamp;
– tr, the reference timestamp;
– tt, the transmit timestamp.

RTT = (t − to)− (tt − tr).
This is a symmetric, asynchronous algorithm that
doesn’t require clocks to be synchronised.

Its accuracy depends on:
– tt computed as late as possible before transmission;
– t computed as early as possible after reception;
– clock drift negligible during a packet exchange.

5/16

Encoding Mills’ algorithm in Babel

Timestamps stored in sub-TLVs:
– transmission timestamp tt stored in Hello TLV:

that’s a property of the packet;
– origin and reference timestamp in IHU TLV:

that’s a property of the neighbour.
Granularity of timestamp is 1μs.
(Originally 10ms, but Dave complained.)

6/16

Packet format

Timestamp in Hello:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 3 | Length | Transmit timestamp |
+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Timestamp in IHU:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 3 | Length | Origin timestamp |
+-+
| | Receive timestamp |
+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7/16

From RTT to route selection

RTT samples

smoothed RTT

penalty

link cost

metric

route selection

smoothing

mapping

+

hysteresis

Mills’ algorithm yields
RTT samples.

Our goal is
route selection.

The RTT samples are
processed in order to
minimise:

– noisy signal;
– oscillations

8/16

Smoothing
The RTT samples are smoothed in order to avoid using
a noisy signal. We use TCP’s exponential average.

At each sample RTTn,

RTT := α ·RTT+ (1− α) ·RTTn (α = 0.836)

����

����

����

����

����

����

����

�� ����� ����� ����� ����� ����� �����

�
�
�
��
�
��
�
�
�
��
�
�
��
�
�
�
�
��
��

�
�

��������

��

������������������������������
�������������������������������

9/16

Feedback loop

Using a metric for RTT causes a feedback loop:
– we direct data to links with low RTT;
– which causes their RTT to increase.

This feedback loop causes persistent oscillations.

In principle, Babel doesn’t care: even in the presence of
oscillations, it pushes packets towards the destination
according to loop-free paths. However, oscillations
cause reordering, and higher-layer protocols do care.

Some mechanism is needed to limit the frequency of
oscillations.

10/16

Cost computation
Saturation

Smoothed RTT is mapped to a cost using a saturating
function:

RTT

Cost

min-cost

max-cost

min-rtt max-rtt

The value of max-rtt is chosen so that congested links
are in the saturated state. In effect, we no longer
oscilate between saturated links.

This requires manual tuning.
11/16

Hysteresis

Saturation avoids oscillating between congested links.
Still, using RTT might cause us to switch between
links with very similar RTT.

Solution: apply hysteresis before route selection.

Let Ma be the announced metric. We compute a
smoothed metric Ms

Ms := β(δ) ·Ms + (1− β(δ)) ·Ma

– Ma is a short-term metric;
– Ms is a long-term metric.

We only switch routes when both are better.

12/16

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
m

o
o
th

e
d

 R
T
T
 m

e
a
su

re
d

 v
ia

 B
a
b

e
l
(m

s)

Time in seconds

Fast routing oscillation, with no saturation of the RTT-based metric

RTT to C as measured by A
RTT to D as measured by A

13/16

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000 3500

S
m

o
o
th

e
d

 R
T
T
 m

e
a
su

re
d

 v
ia

 B
a
b

e
l
(m

s)

Time in seconds

Routing oscillation

RTT to C as measured by A
RTT to D as measured by A

rtt-max

14/16

Open issues

This extension has been used for years in production,
with excellent results. Still, open issues remain.

Packet format:
– an IHU sub-TLV can only be interpreted if the packet

contains a Hello sub-TLV.
(Is this a problem? The alternative, including a transmit
timestamp in each IHU, requires duplicating the
timestamp multiple times.)

Algorithms:
– we didn’t evaluate different smoothing functions;
– bad things happen if max-rtt is too large;
– we didn’t work on auto-tuning max-rtt;
– we didn’t evaluate the effect of hysteresis;

15/16

Conclusion

draft-jonglez-babel-rtt-extension-02 describes a
simple protocol extension that has been used in
production for years, with excellent results.

It is used together with a bunch of algorithms that are
not fully understood, but happen to work well.

Suggestion:
– standardise the packet format;
– describe the algorithms in an informative appendix;
– do more research on the algorithms.

16/16

