draft-ietf-bess-secure-01.txt

A. Sajassi (Cisco), A. Banerjee (Cisco), S. Thoria (Cisco), D. Carrel (Cisco), B. Weis (Cisco)

IETF 104, March 2019
Prague
History

- Rev00 was presented in the last IETF (IETF 103) in Bangkok
Solution Overview

- Secure control channel between each PE and the RR (e.g., using existing scheme such as IKv2)
 - Setup BGP session over this secure tunnel

- Use this secured BGP channel for P2MP signaling to establish P2P IPsec SAs for user traffic
 - No need for P2P signaling to establish P2P SA
 - Reducing # of msg exchanges from $O(N^2)$ to $O(N)$
 - Each PE advertises to other PEs the info needed for establishing P2P SAs
Solution Overview (2)

- When a PE device first comes up and wants to setup an IPsec SA between itself and each of the interested remote PEs, it generates a DH pair for each of its intended IPsec SA using an algorithm defined in the IKEv2 Diffie-Hellman Group Transform IDs [IKEv2-IANA].

- The originating PE distributes DH public value along with a nonce (using IPsec Tunnel TLV in Tunnel Encapsulation Attribute) to other remote PEs via the RR.

- Each receiving PE uses this DH public number and the corresponding nonce in creation of IPsec SA pair to the originating PE
Encapsulations

Two types of IPSec encapsulations for our applications

1. IPsec encap in transport mode without outer UDP header
2. IPsec encap in transport mode with outer UDP header per [RFC3948]
 - Needed for NAT traversal or per flow LB using UDP header
Changes Since Rev00

- Some editorial changes
- Added the requirements for setting up an IPsec tunnel between a pair of ASs between ingress and egress PEs
- Added the new section 3.1 on “Inheritance of Security Policy”
- Modified IPsec Tunnel Attribute sub-TLVs for better optimization
Inheritance of Security Policy

- IPsec tunnels for EVPN & other VPNs can be setup at different level of granularity
- For example, if an IPsec tunnel is needed between a pair of ACs, then IPsec tunnel attribute is carried along with the EVPN route representing each AC
- In the absence of such coloring (e.g., sending IPsec tunnel attribute explicitly along an EVPN route), the route inherits the IPsec tunnel of next level up (of its parent)
- For example, in the absence of Ipsec tunnel attribute for EVPN route representing AC, the AC
<table>
<thead>
<tr>
<th>Functionality</th>
<th>EVPN</th>
<th>IP-VPN</th>
<th>MVPN</th>
<th>VPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>per tenant</td>
<td>IMET (or new)</td>
<td>lpbk (or new)</td>
<td>I-PMSI</td>
<td>N/A</td>
</tr>
<tr>
<td>per subnet</td>
<td>IMET</td>
<td>N/A</td>
<td>N/A</td>
<td>VPLS AD</td>
</tr>
<tr>
<td>per IP</td>
<td>EVPN RT2/RT5</td>
<td>VPN IP rt</td>
<td>*,G or S,G</td>
<td>N/A</td>
</tr>
<tr>
<td>per MAC</td>
<td>EVPN RT2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Min set

Minimum Set

ID, [N(INITIAL_CONTACT),] KE, Ni; where

ID payload is defined in section 3.5 of [RFC7296]
N (Notify) Payload in section 3.10 of [RFC7296]
KE (Key Exchange) payload in section 3.4 of [RFC7296]
Ni (Nonce) payload in section 3.9 of [RFC7296]

KE payload contains the DH public number and also identifies which DH group to use.

Single Policy

ID, [N(INITIAL_CONTACT),SA, KE, Ni]

SA (Security Association) payload in section 3.3 of [RFC7296]

Policy List and DH group List

ID, [N(INITIAL_CONTACT), [SA], [KE], [Ni]]

[SA] list of IPsec policies (i.e., list of SA payloads)
[KE] list of KE payloads
Base DIM Sub-TLV – min. set

```
+---------------------------------------------+---------------------------------------------+---------------------------------------------+---------------------------------------------+
| ID Length | Nonce Length | I | Flags |
+---------------------------------------------+---------------------------------------------+---------------------------------------------+---------------------------------------------+
| Rekey                                             |                                            |                                            |                                            |
| Counter                                           |                                            |                                            |                                            |
+---------------------------------------------------+---------------------------------------------+---------------------------------------------+---------------------------------------------+
| ~ Originator ID + (Tenant ID) + (Subnet ID) + (Tenant Address) ~ |
+---------------------------------------------------+---------------------------------------------+---------------------------------------------+---------------------------------------------+
| ~ Nonce Data                                       |                                            |                                            |                                            |
```

Figure 5: The Base DIM Sub-TLV
Key Exchange Sub-TLV

Diffie-Hellman Group Num 916 bits) identifies the Diffie-Hellman group in the Key Exchange Data was computed. Diffie-Hellman group numbers are discussed in IKEv2 [RFC7296] Appendix B and [RFC5114].

The Key Exchange payload is constructed by copying one’s Diffie-Hellman public value into the “Key Exchange Data” portion of the payload. The length of the Diffie-Hellman public value is described for MOPD groups in [RFC7296] and for ECP groups in [RFC4753].

5.3

The SA Sub-TLV is described in 3.2.2.2. Zero or more SA Sub-TLVs may be included in the IPSec Tunnel TLV.

Figure 6: Key Exchange Sub-TLV
SA Proposal Sub-TLV

Figure 6: Key Exchange Sub-TLV

Diffie-Hellman Group Num 916 bits) identifies the Diffie-Hellman group in the Key Exchange Data was computed. Diffie-Hellman group numbers are discussed in IKEv2 [RFC7296] Appendix B and [RFC5114].

The Key Exchange payload is constructed by copying one's Diffie-Hellman public value into the "Key Exchange Data" portion of the payload. The length of the Diffie-Hellman public value is described for MOPD groups in [RFC7296] and for ECP groups in [RFC4753].

5.3 ESP SA Proposals Sub-TLV

The SA Sub-TLV is described in 3.2.2.2. Zero or more SA Sub-TLVs may be included in the IPSec Tunnel TLV.

Figure 8: ESP SA Proposals Sub-TLV

Num Transforms is the number of transforms included. Reserved is not used and MUST be set to zero on transmit and MUST be ignored on receipt.

5.3.1 Transform Substructure
Transform Substructure Sub-TLV

Figure 9: Transform Substructure Sub-TLV
Next Step

- Solicit more input
- Publish Rev02
- Request for WG adoption after Rev02 publication
THANK YOU!