
Weighted Highest Random Weight (HRW) and its
Applications

03/24/2019

Satya R Mohanty

Mankamana Misra

Ali Sajassi

Acee Lindem

IETF 104 Prague

03/24/2019

S1 S2 S3

The Load Balancing problem:

233

318

597

Objects with object-id

Modulo-N Assignment: S = key%N
When one server goes down or comes up, a lot of
reassignments!

Given a set of servers and objects, devise a mapping scheme such that load is evenly
spread and minimally disruptive in case of reassignments

Highest Random Weight (HRW)

• When the hash function is uniform (any good hash function
should satisfy this) and as the load (number of objects)
increases, It is proved ⍏ that

– The load is evenly balanced across the servers using HRW

– Minimal disruption property: a server going up or down results in a minimal
reassignment of impacted objects

⍏Using name-based mappings to increase hit rates: Thaler et. al. IEEE Transactions on Networking, 1999

03/24/2019

03/24/2019

H(S1*) = 457

H(S2*) = 317

H(S3*) = 512

S1 S2 S3

233

233

233

233

H(S1*) = 471

H(S2*) = 513

H(S3*) = 172318

318

318 H(S1*) = 919

H(S2*) = 200

H(S3*) = 706

597

597

597

597

Hash(Srvr-id * Key) = Score
Highest score wins

318

03/24/2019

H(S1*) = 457

H(S2*) = 317

H(S3*) = 512

S1 S2 S3

233

233

233

233

H(S1*) = 471

H(S2*) = 513

H(S3*) = 172318

318

318 H(S1*) = 919

H(S2*) = 200

H(S3*) = 706

597

597

597

597

Hash(Srvr-id * Key) = Score
Highest score wins S3 goes down!

X
233 318

03/24/2019

H(S1*) = 457

H(S2*) = 317

H(S3*) = 512

H(S4*) = 236

S1 S2 S3 S4

233

233

233

233

233

H(S1*) = 471

H(S2*) = 513

H(S3*) = 172

H(S4*) = 672318

318

318

318 H(S1*) = 919

H(S2*) = 200

H(S3*) = 706

H(S4*) = 234597

597

597

597

318597

Hash(Srvr-id * Key) = Score
Highest score wins S4 comes up!

318

Weighted HRW

• What happens when the Servers are not of equal capacities
or weights?

• One approach: Take the weighted score:

 fi * Hash(Srvr-id * Key); where fi is wi/sum(wj), j=1,..,

• Microsoft: Cache Array Routing Protocol (CARP)
– https://tools.ietf.org/html/draft-vinod-carp-v1-03

03/24/2019

https://tools.ietf.org/html/draft-vinod-carp-v1-03

03/24/2019

H(S1*) * 0.5 = 457 * 0.5

H(S2*) * 0.15 = 317 * 0.15

H(S3*) * 0.2 = 512 * 0.2

H(S4*) * 0.15 = 236 * 0.15

S1 S2 S3 S4

233

233

233

233

fi * Hash(Srvr-id * Key) = Score

Highest score wins

W1=50 W2=15 W3=20 W4=15

03/24/2019

H(S1*) * 0.456

H(S2*) * 0.227

H(S3*) * 0.182

H(S4*) * 0.136

S1 S2 S3 S4

233

233

233

233

fi * Hash(Srvr-id * Key) = Score

Highest score wins

W2=25 W4=15W3=20W1=50

• The weight of S2 only changed.
• But load factors changed everywhere!
• This will result in re-computation and re-

assignment in a potentially disruptive
manner

• Does not satisfy HRW desirable
properties

• CARP does not have this property

Weighted HRW

• Taking the weighted score is not efficient

 fi * Hash(Srvr-id * Key); where fi is wi/sum(wj), j=1,.., N

• Take the score as: -wi/ln(Hash(Srvr-id * Key)/Hmax)
 Jason Resch. "New Hashing Algorithms for Data Storage [Storage Developer Conference, Santa Clara, 2015]

• Only need to re-compute the score for the server whose weight changed.
Other’s scores do not change

• Obeys the minimal disruption properties of the HRW

– When a server is added/removed or changed, only the scores for that node change.

– It may win some keys (if score increases)

– It may lose some keys (if score decreases)

– And it does so with minimal disruption

03/24/2019

http://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/Jason_Resch_New_Consistent_Hashings_Rev.pdf

Applications

• EVPN DF
– Different link Bandwidth on lag
 https://tools.ietf.org/html/draft-ietf-bess-evpn-unequal-lb-00

• Resilient Hashing
– LAG

– Unequal cost multipath

• Multicast
– Unequal B/W towards receivers

– DR elections when access bandwidth is different for attach points in the
last hop network

03/24/2019

https://tools.ietf.org/html/draft-ietf-bess-evpn-unequal-lb-00

PE1, v1, v2, …

PE2, v1, v2, …

PE3, v1, v2, ….

PE4, v1, v2, …

CE

PE5, v1, v2RR

Esi: 10::0::0::1

MPLS VPN Core

• Goal is to have different DFs (PEs) for different
EVI (vi) for load balancing

03/24/2019

32

16

52

48

EVPN DF Election in A/A Deployments with DMZ link bandwidth)

• When any multi-homed PE is introduced or
goes down, we should have minimal number
of reassignments

• Note that this reduces to the WHRW problem
with the PE’s ip-address as the srv-id and the
vlan-id (vi) as the object id!

Resilient Hashing

03/24/2019

• Minimize flow remapping in Trunk/ECMP Groups in FIB
• Many vendors…..
• But nothing on UCMP?

LAG

1.1.1.1/32

2.2.2.2/32

3.3.3.3/32

5

4

7

Flows hashed on 5-tuple

Metrics/link-
bw

Flows hashed on 5-tuple

Can extend https://tools.ietf.org/html/rfc2991

Thanks!!!

03/24/2019

	Slide 1
	Slide 2
	Highest Random Weight (HRW)
	Slide 4
	Slide 5
	Slide 6
	Weighted HRW
	Slide 8
	Slide 9
	Weighted HRW
	Applications
	Slide 12
	Resilient Hashing
	Slide 14

