Considerations for Benchmarking Network Performance in Containerized Infrastructure draft-dcn-bmwg-containerized-infra-00

Kyoungjae Sun (gomjae@dcn.ssu.ac.kr), Hyunsik Yang, Youngki Park, Younghan Kim IISTRC, Soong-Sil University Wangbong Lee

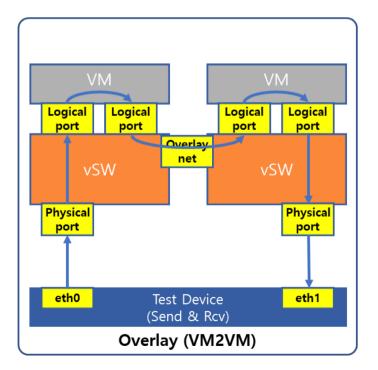
ETRI

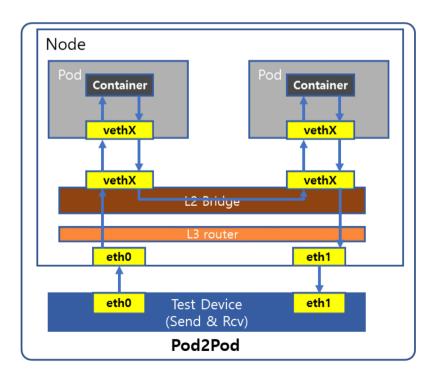
Containerized Infrastructure

- Virtualized Network Functions(VNFs) are running on container
 - Sharing same host OS
 - isolated by using different namespace
 - It can reduce
 - Processing load by hypervisor
 - Resource for Guest OS
 - Suitable for micro-service and cloud-native environment

Guest VM Guest VM					
APP	APP				
Guest Kernel	Guest Kernel				
vswitch or linux bridge					
Hypervisior					
Host OS					
Server					

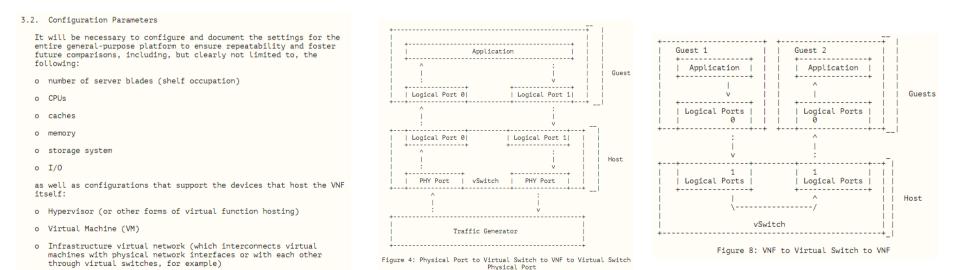
Container APP Bin/Libs Container Container Engine Host OS Server


VM(Virtual Machine) based NFV Infra


Container based VNF Infra

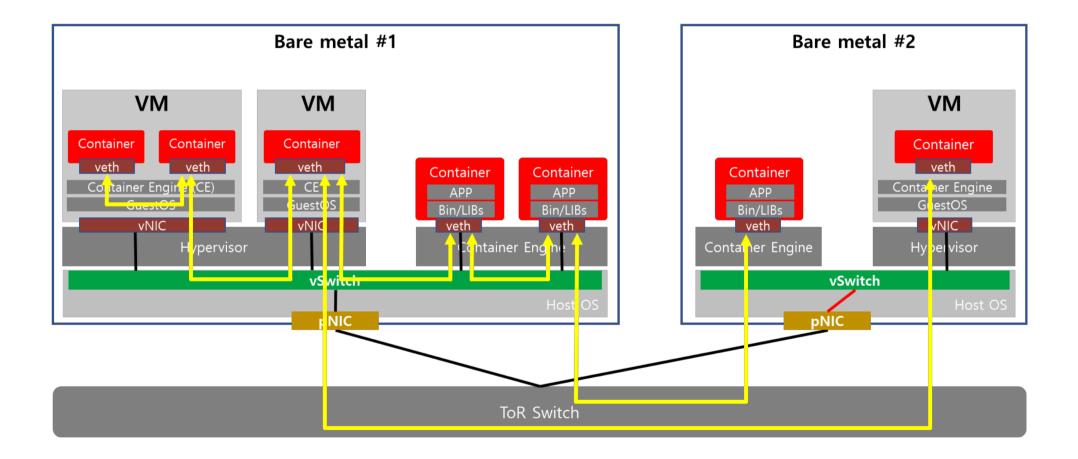
NFV Infrastructure Model

• ETSI GS NFV-TST 009


- For container networking, ETSI already described their network test architecture
 - host system may use OVS, but there are many other options
 - Network Plug-ins (CNI, CNM, ..)

Benchmarking Considerations

- There are two RFCs about NFV benchmarking
- RFC 8172 : Considerations for Benchmarking Virtual Network Functions and Their Infrastructure
 - Define general-purpose platform as VM-based infra
- RFC 8204 : Benchmarking Virtual Switches in the Open Platform for NFV (OPNFV)
 - Describe deployment scenarios for testing vswitch benchmarking based on VM-based infra



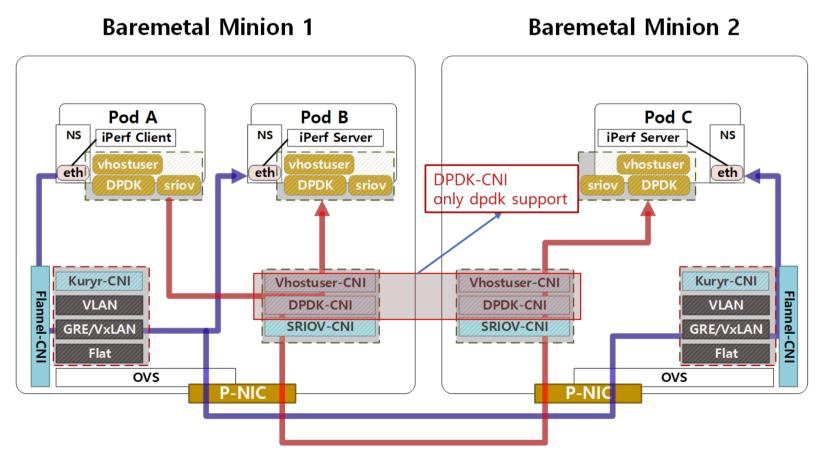
- Does it applicable for containerized infrastructure?
- Do test scenarios are covered also for containerized infrastructure?

Our Experience

- Network performance testing in containerized infrastructure
 - Deployment Environment
 - Deploy the container on Baremetal
 - Deploy the container on VM
 - OpenStack + Kubernetes Hybrid Environment
 - Creates POD using Kubernetes (baremetal & VM)
 - Network Feature
 - CNI Flannel, Kuryr Networking, ..
 - Network Acceleration Feature(SR-IOV)
 - Network Service Type
 - VxLAN, VLAN, SR-IOV, offloading VxLAN

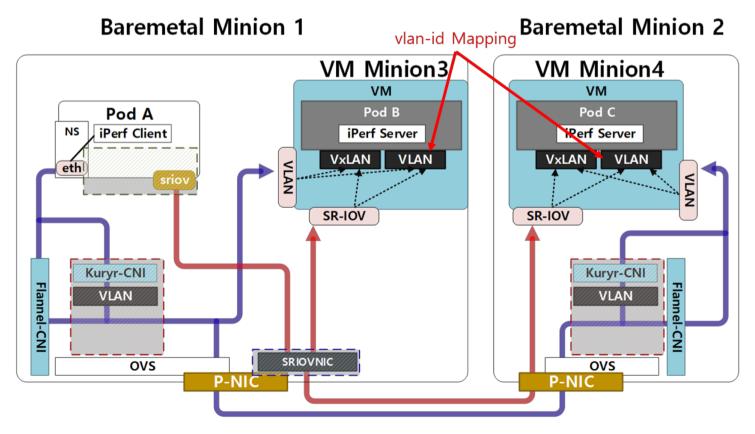
Test-bed Environment #1

Test-bed Environment #2

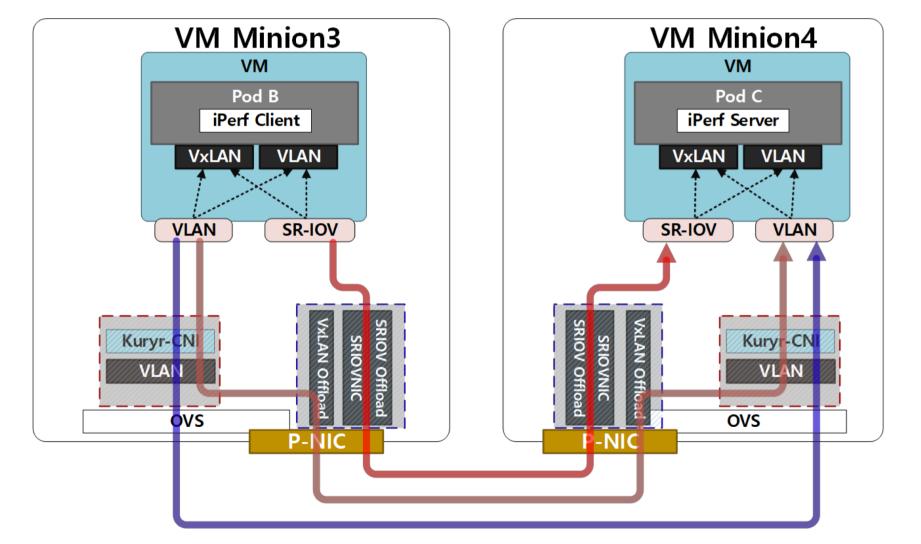

NODE	Classification	Specification		
Baremetal	CPU	Intel(R) Xeon(R) Gold 6148 2.40GHz * 2		
(Master / Minion1 / Minion2)	MEMORY	DDR4 2400 MHz 32GB * 6		
	SR-IOV NIC	Mellanox ConnectX-5 (40G SFP+)		
VM (Minion3 / Minion4)	CPU	Virtualized CPU * 8 (apply host-model)		
	MEMORY	Virtualized MEM * 32GB		
	NIC	vhost-net and sr-iov vf, vhost-user		
System Software	OS	Ubuntu 16.04 Server LTS		
	Cloud OS	Openstack queens by Devstack		
	COE	kubernetes v1.9.0 and docker 18.06		
	CNI	default cni plugin driver and kuryr, flannel, sr-iov, vshot-user, multus		

Testing Scenarios

- BMP2BMP
 - Baremetal POD to Baremetal POD (local or remote)
- BMP2VMP
 - Baremetal POD to VM POD (local or remote)
- VMP2VMP
 - VM POD to VM POD (local or remote)
- Common Configuration
 - container image : ubuntu 16.04 (modified)
 - bandwidth tool : iperf or iperf3 (https://iperf.fr)
 - latency tool : sockperf (<u>https://github.com/Mellanox/sockperf</u>)

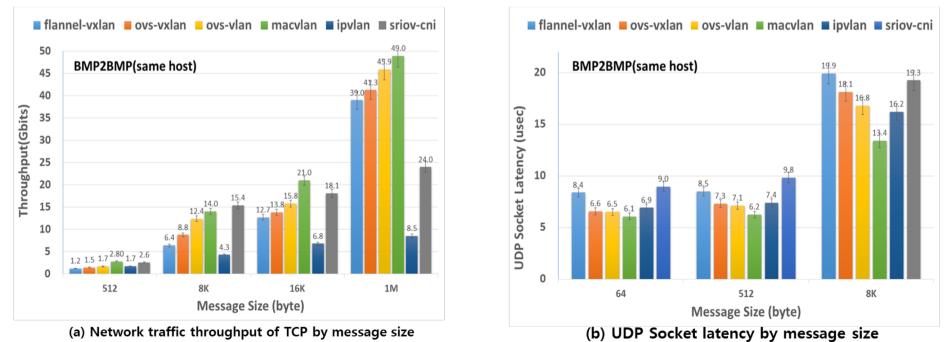

Scenario – BMP2BMP

- Networking Scenario
 - OpenStack-Kuryr (OVS bridge)
 - Flannel-CNI (docker bridge-Flannel bridge)
 - MACVLAN, IPVLAN / Data acceleration(SR-IOV)


Scenario – BMP2VMP

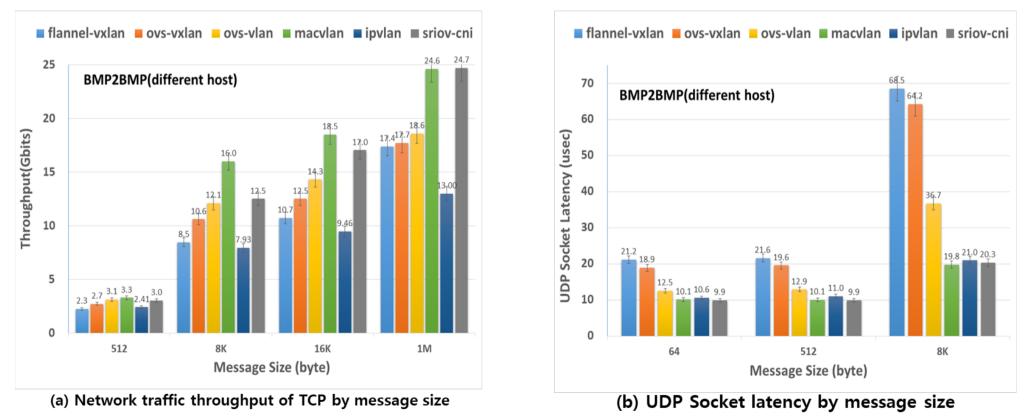
- VM based Container Network
 - VxLAN and VLAN modules are running in guest VM (ovs bridge)
 - VM network port supports VLAN and SR-IOV

Scenario – VMP2VMP


Baremetal Minion 1

Baremetal Minion 2

Result – BMP2BMP (local)


- VxLAN results
 - Ovs-vxlan > flannel-vxlan up to 10%
 - Overhead due to software processing of VxLAN packets
- VLAN results
 - Throughput : macvlan > ovs-vlan (20% lower) > SR-IOV > ipvlan
 - Latency : SRIOV(up to 16K) > ovs-vlan > ipvlan > macvlan

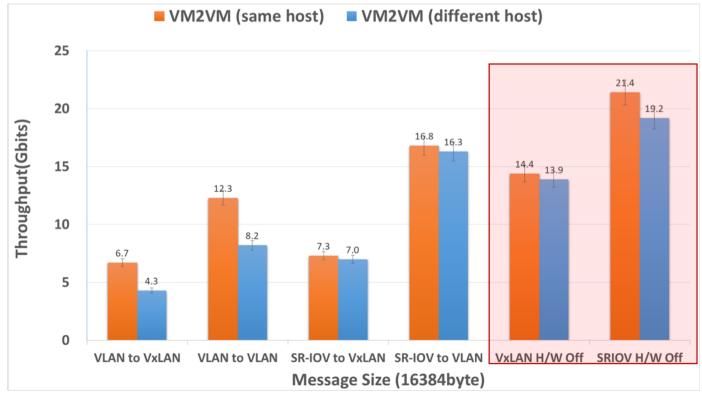
Network Performance Evaluation between POD at the Same Bare Metal

Result - BMP2BMP (Remote)

- VxLAN results: ovs-vxlan > flannel-vxlan
- VLAN results: MACVLAN > ovs-vlan > ipvlan
 - SR-IOV cannot support RDMA (remote direct memory access)

Network Performance Evaluation between POD at the Different Bare Metal

Result – BMP2VMP


- Performance degradation by software processing of Vxlan in VM
 - Encap/Decap processing of VxLAN (for internal network)

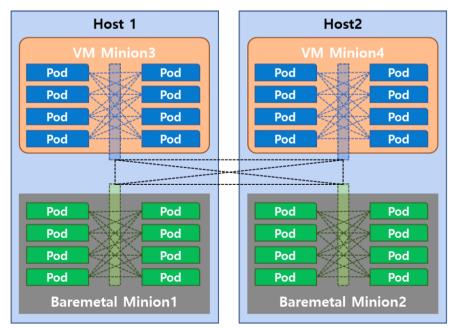
Network Throughput between Baremetal and VM POD

Result – VMP2VMP

- In the case of VM, Best performance by applying hardware offload to SR-IOV and VxLAN.
 - Using H/W offloading, Encap/Decap process is done by hardware

VM based Container Network Throughput

Conclusion

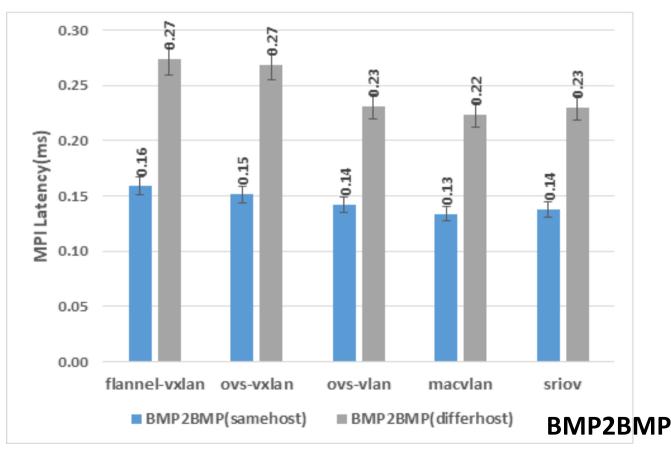

- What we learned
 - Containerized infrastructure have different isolation method
 - It may impact performance of VNF lifecycle management
 - Containerized infrastructures have several deployment options
 - POD / individual container (depends on container engine)
 - Running on VM / Baremetal
 - Testing scenarios will be different for each deployment models
- Our initial draft based on learning
 - But, we need more work to go forward
 - Including Test scenario, specific technologies, ...
 - Feedbacks and reviews are always welcome
 - Thanks Al and Maciek for review before meeting!

Thankyou!

Backup slides

Parallel Paths Test

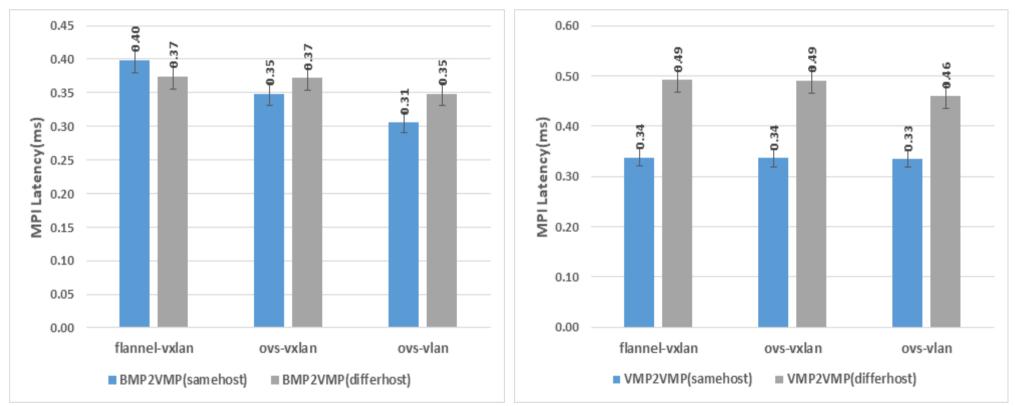
- Using Message Passing Interface(MPI)
 - Apply Collective communication (MPI_ALLTOALL)
 - 8 PODs in each host server
 - Measure latency of 2 socket processing on each POD (packet size=16KB)


Test Scenario BMP2BMP BMP2VMP VMP2VMP

- 1 pod = 1 Container

- Includes MPI library in Pod

Testing Results (1)


 VLAN technologies(ovs-vlan, macvlan, sriov) are shown better performance up to 10% than overlay network (vxlan) for all test scenarios.

Testing Results (2)

BMP2VMP

Results - Increase the process to four

- BMP2BMP same host case results higher latency for increasing process load
- BMP2VMP Parallel path created in BMP impacts latency for both case (same & different host case)
- VMP2VMP
 - In case of same-host, low latency since that parallel path are processed in host kernel via single interface

network method	flannel-vxlan	ovs-vxlan	ovs-vlan	mac-vlan	sr-iov
BMP2BMP	20.11	19.72	19.65	19.62	19.63
(same-host)	(ms)	(ms)	(ms)	(ms)	(ms)
BMP2BMP	16.11	15.84	14.81	14.52	14.46
(differ-host)	(ms)	(ms)	(ms)	(ms)	(ms)
BMP2VMP	249.79	249.11	246.05	,	,
(same-host)	(ms)	(ms)	(ms)	/	/
BMP2VMP	266.03	267.01	260.60	,	,
(differ-host)	(ms)	(ms)	(ms)	/	1
VMP2VMP	37.48	37.18	35.35	1	/
(same-host)	(ms)	(ms)	(ms)		
VMP2VMP	531.39	521.39	421.83		
(differ-host)	(ms)	(ms)	(ms)		