
IETF104-Prague, BMWG
draft-vpolak-bmwg-plrsearch-01

Authors: Vratko Polák, Maciek Konstantynowicz

Presented by: Vratko Polák



Motivation

• Using [RFC2544] for NFV, specifically NFV software data planes, often yields not 
repetitive and not replicable end results.

• Users are still interested in “throughput”, or some statistical analogue.

• Even if systems under test are modeled as probabilistic (as opposed to 
deterministic), simplifying assumptions have to be made to allow definition of 
such statistical analogue terms.

• Probabilistic Loss Ratio search (PLRsearch) is a class of algorithms which apply 
probabilistic theory to turn unreliable measurements into as reliable conclusions 
as practically possible.



Overview

• PLRsearch is a packet “throughput” search algorithm suitable for probabilistic (as opposed to 

deterministic) systems.

• It searches for probabilistically defined critical load satisfying given target loss ratio.

• It performs sequential trial measurements of offered load constant within a measurement.

• It still applies many assumptions on the system behavior, often unrealistic for some systems.

• It assumes results of trial measurements are independent of each other.

• It assumes possible loss counts follow Poisson distribution.

• It assumes average loss ratio does not depend on trial duration.

• It relies on heuristic fitting functions to relate results of trial measurements with different offered loads.

• It uses Bayesian inference computing both trial measurements’ offered load and final estimate.



Side comments

• PLRsearch is similar to RFC 2544 compatible throughput searches, but the values of offered load are 
given by probabilistic numerical computation, as opposed to simple rules.

• Target loss ratio of exact zero is not supported by PLRsearch.

• That is because exact zero probabilities cause technical problems for Bayesian inference.

• Recommended value is 10^-7. Smaller values are possible, but the search would converge more slowly.

• Precision of the final estimate is affected by trial durations in two opposite ways.

• Shorter durations allow more frequent updates to offered load, speeding up convergence.

• Numerical computation is done in parallel with trial measurement, and it needs some time to give precise enough estimate.

• Prototype implementation in FD.io CSIT project works, but still contains some deficiencies.

• Other advanced techniques (such as neural networks) could be used (also for deterministic searches) in 

hope to choose more relevant offered loads, but estimation of critical rate has to be done by sound 

statistical methods.



Fitting Function Graphs

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

1.60E+05

1.80E+05

2.00E+05

700000 750000 800000 850000 900000 950000 1000000 1050000 1100000 1150000 1200000

Loss rate [pps] as a function of offered load [pps]

stretch absolute erf absolute

-15

-10

-5

0

5

10

700000 750000 800000 850000 900000 950000 1000000 1050000 1100000 1150000 1200000

Natural logarithm of loss rate as a function of offered load

stretch logarithmic erf logarithmic



Estimate Evolution Graph

27.9094

27.9095

27.9096

27.9097

27.9098

27.9099

0 300 600 900 1200 1500 1800

Th
ro

u
gh

p
u

t 
[M

p
p

s]

Time [s]

L2 patch bidirectional throughput estimate
as a function of time since search start

Lower bound Upper bound



Estimate Evolution Graph

4580000

4600000

4620000

4640000

4660000

4680000

4700000

4720000

4740000

0 600 1200 1800

Chart Title

Series1 Series2



Estimate Evolution Graph

20000000

21000000

22000000

23000000

24000000

25000000

26000000

27000000

28000000

0 3600 7200 10800 14400 18000 21600

Chart Title

Series1 Series2



Estimate Evolution Graph



Sample Implementation

• Current work-in-progress implementation of PLRsearch is in Linux 
Foundation FD.io CSIT project. 

• CSIT project general information:
• https://wiki.fd.io/view/CSIT

• https://git.fd.io/csit/

• The most recent code right now:
• https://gerrit.fd.io/r/#/c/16667/29

https://wiki.fd.io/view/CSIT
https://git.fd.io/csit/
https://gerrit.fd.io/r/#/c/16667/29


Implementation specifics

• Monte Carlo numerical integration is used, even though parameter space is currently only two-
dimensional.

• Importance sampling is needed, because posterior distributions are concentrated in very narrow 
areas.

• Some amount of samples is needed for locating new area after each additional trial measurement 
result.

• Two fitting functions (named “stretch” and “erf”) are used to introduce systematic error.
• If estimates from the two functions do not agree, it is possible that neither of the estimates is good.

• If the estimates agree, it might be just by luck, not by predictable system behavior.

• Better ways to determine reliability of the estimates could be applied.

• Currently, zero-loss results move the critical load estimate too little. Some workarounds might be 
needed.

• Implemented in Python 2.7, using multiprocessing.

• Will be published in PyPI once CSIT starts using it in real tests.



Importance Sampling Illustration

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.125 0.13 0.135 0.14 0.145 0.15 0.155

Progression from early (magenta) to later (green) samples


