Authors:
Haomian Zheng (zhenghaomian@huawei.com)
Aihua Guo (aihuaguo@huawei.com)
Italo Busi (Italo.Busi@huawei.com)
Anton Snitser (antons@sedonasys.com)
Francesco Lazzeri (francesco.lazzeri@ericsson.com)
Yunbin Xu (xuyunbin@ritt.cn)
Yang Zhao (zhaoyangyjy@chinamobile.com)
Xufeng Liu (xufeng.liu.ietf@gmail.com)
Giuseppe Fioccola (giuseppe.fioccola@huawei.com)

Contributors:
Yanlei Zheng, Zhe Liu, Sergio Belotti, Yingxi Yao
Changes from IETF 103

• On the draft:
 – Two more co-authors (welcome Anton and Francesco);
 – Add a new session indicating the necessity of models;
 – Add a new session indicating the usage of the models;
 – Add a table of prefix overview;
 – Add the IANA considerations;

• Revision on ietf-eth-tran-service:
 – Constructing multiple levels: instance/endpoint/access, and consider the resilience;
 – Add the information for pseudowire (pw);
 – Restructure the pm-config and the state monitoring;

• Revision on module ietf-trans-client-service:
 – Adding more log information (customer, create/update time);
Necessity & Usage of Proposed Models (1)
Necessity & Usage of Proposed Models (2)
Necessity & Usage of Proposed Models (3)

Proposed Models take care of CE-PE for transparent and Ethernet clients.
Necessity & Usage of Proposed Models (4)

The TE Tunnel Model takes care of PE-P2 segment and inter-domain link at P2.

The Proposed Models take care of access link at PE1 for transparent and Ethernet clients.

Network Configuration Models [RFC8309]
Levels with Resilience

module: ietf-eth-tran-service
 --rw etht-svc
 --rw etht-svc-instances* [etht-svc-name]
 --rw etht-svc-end-points* [etht-svc-end-point-name]
 --rw etht-svc-access-points* [access-point-id]

Placeholders for Resilience are left on various level, with details for future discussion;
Consider 1+1 as an example:

Step 1: CNC create CE1-CE2 1+1 protection;
Step 2: MDSC Create two separate tunnels for working/protection;
Step 3: CE takes care of the switching once there is failure reported;
Resilience with CE+PE Switching

Step 1: CNC request to MDSC with 1+1, but rely on MDSC for configuration;

Step 2: MDSC Create Endpoint;

Step 3: MDSC configure protection on Endpoint Level;

Step 4: CE/PE will both involve for switching per failure.

Endpoint Concept is consistent with MEF 7.3;
Resilience with PE Switching

Single Access with protection on tunnels; Only PE will be involved for switching.
PseudoWire (PW) Segment

```yaml
---rw eth-tunnels* [tunnel-name]
  ---rw tunnel-name  string
  ---rw (svc-multiplexing-tag)?
    ---:(other)
    ---:(none)
    ---:(vlan-tag)
    ---:(pw-segment)
      ---rw pw-id?  string
      ---rw pw-name?  string
      ---rw transmit-label?  rt-types:mpls-label
      ---rw receive-label?  rt-types:mpls-label
      ---rw encapsulate-type?  identityref
      ---ro oper-status?  identityref
      ---rw ingress-bandwidth-profile
        ---rw (style)?
          ---:(named)
            | ---rw bandwidth-profile-name?  leafref
          ---:(value)
            ---rw bandwidth-profile-type?  etht-types:bandwidth-profile-type
            ---rw CIR?  uint64
            ---rw CBS?  uint64
            ---rw EIR?  uint64
            ---rw EBS?  uint64
```

PW Segment Added here
Summary & Next Step

• Good Consistency with existing IETF models;
• Tested in ETSI Microwave plugtest;
• Implementation deployed among vendors & carriers;
• Ask for WG Adoption;

• Model available on:

• Next Steps include:
 – Resilience and Performance Monitoring Details