A Yang Data Model for Optical Impairment-aware Topology

draft-lee-ccamp-optical-impairment-topology-yang-01

Y. LEE, H. ZHENG, I. BUSI (HUAWEI)
N. SAMBO (SSS)
V. LOPEZ (TELEFONICA)
G. GALIMBERTI, G. MARTINELLI (CISCO)
J. L. AUGE, E. L. ROUZIC, J. MEURIC (ORANGE)
D. BELLER, S. BELOTTI, E. GRISERI (NOKIA)
G. GRAMMEL (JUNIPER)
J. MARTENSSON (ACRO)
Introduction

- The intent of this document is to provide a Yang data model, which can be utilized by an Multi Domain Service Coordinator (MDSC) to collect states of WSON/SSON impairment data from the Transport PNCs to enable impairment-aware optical path computation according to the ACTN Architecture [RFC8453].
- The draft is built upon [RFC7446] defining RWA information model for WSON and supports both WSON and Flexi-grid (SSON) optical networks.
- This document augments the generic TE topology draft [TE-TOPO] and make use of ietf-layer0-types (TBD) for common groupings.
- The impairment-aware topology this draft is addressing is scoped to complement the optical interface model defined in [draft-dharini]
OTS/OMS Clarification

- OTS Media Link represents a fiber link between booster amplifier embedded in ROADM and In Line Amplifier (ILA), between ILA and ILA, or between ILA and pre-amplifier embedded in ROADM.

- OMS Media Link combines a list of OTS links and amplifiers, between two ROADMs.

- Exposing OTS media links state to the controller may have a use-case that is useful for some use-case such as fault isolation, etc. On the other hand, in most applications and use-cases, OMS media links state would be sufficient level of abstraction. This is subject to further investigation.
The OMS includes booster and pre-amp amplifiers at each end, usually both are physically part of ROADM nodes.
Yang Model (Part 1)

module: ietf-optical-impairment-topology
augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
 +--rw optical-impairment-topology!
 +--rw optical-impairment-topology
augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes:
 +--ro OMS-attributes
 +--ro generalized-snr? decimal64
 +--ro equalization-mode identityref
 +--ro (power-param)?
 | +--:(channel-power)
 | +--ro nominal-channel-power? decimal64
 | +--:(power-spectral-density)
 | +--ro nominal-power-spectral-density? decimal64
 +--ro network-media-channel-group* [i]
 | +--ro i int16
 | +--ro current-channels* [flex-n]
 | | +--ro flex-n uint16
 | | +--ro flex-m? uint16
 | +--ro OTSIG-container* [carrier-id]
 | | +--ro carrier-id int16
 | | +--ro OTSi-carrier-frequency? decimal64
 | | +--ro OTSi-signal-width? decimal64
 | | +--ro channel-delta-power? decimal64
 +--ro OMS-elements* [elt-index]
 | +--ro elt-index uint16
 | +--ro uid? string
 | +--ro type identityref
 | +--ro element
 | +--ro (element)?
 | +--:(amplifier)
 | | +--ro amplifier
 | | | +--ro type_variety string
 | | | +--ro operational
 | | | | +--ro actual-gain decimal64
 | | | | +--ro tilt-target decimal64
 | | | | +--ro out-voa decimal64
 | | | | +--ro in-voa decimal64
 | | | | | +--ro (power-param)?
 | | | | | | +--:(channel-power)
 | | | | | | | +--ro nominal-channel-power? decimal64
 | | | | | | +--:(power-spectral-density)
 | | | | | | | +--ro nominal-power-spectral-density? decimal64
 | | | +--:(fiber)
 | | | | +--ro fiber
 | | | | | +--ro type_variety string
 | | | | | +--ro length decimal64
 | | | | | +--ro loss_coef decimal64
 | | | | | +--ro total_loss decimal64
 | | | | | | +--ro pmd? decimal64
 | | | | | | +--ro conn_in? decimal64
 | | | | | | +--ro conn_out? decimal64
 | | | | | | +--:(concentratedloss)
 | | | | | | +--ro concentratedloss
 | | | | | | +--ro loss? decimal64
Yang Model (Part 2)

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point:
 +--ro transponders-list* [transponder-id]
 +--ro transponder-id uint32
 +--ro (mode)?
 | +--:G.692.2
 | | +-- G.692.2? layer0-types:standard-mode
 | +--:organizational_mode
 | | +--ro operational-mode? layer0-types:operational-mode
 | | +--ro organization-identifier? layer0-types:vendor-identifier
 | +--:explicit_mode
 | | +--ro available-modulation* identityref
 | | +--ro modulation-type? identityref
 | | +--ro available-baud-rates* uint32
 | | +--ro configured-baud-rate? uint32
 | | +--ro available-FEC* identityref
 | | +--ro FEC-type? identityref
 | | +--ro FEC-code-rate? decimal64
 | | +--ro FEC-threshold? decimal64
 +--ro power? int32
 +--ro power-min? int32
 +--ro power-max? int32

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point:
 +--ro transponder-list* [carrier-id]
 +--ro carrier-id uint32
Relationships between this draft and Dharini draft

- **draft-dharini** is an **interface model**.
- **draft-lee** is a **network topology model** (that has a larger scope than interface model).
- These two drafts are **complementary and full consistency will be ensured at the WG level**.
- **Ietf-type0-types** will keep some common groupings/types.
Model Relationships:

draft-lee-ccamp-optical-impairment-topology-yang

ietf-network-topology (RFC8345)

import

ietf-layer0-types

import

import

ietf-te-topology

import

augment

ietf-optical-impairment-topology

augment
Model Relationships:
draft-dharini-ccamp-dwdm-if-param-yang
Next Step

- Request for WG adoption
- Work on model consistency with Dharini draft
- Enhance OMS link model
- Enhance optical spectrum description (OTSi-G) relationship with network media channel
- Two off-line sessions are scheduled:
 - 3/26 9-11AM
 - 3/26 4-6 PM
Thank You!