
Randomness Improvements for Security Protocols

draft-irtf-cfrg-randomness-improvements

Cas Cremers (cremers@cispa.saarland)
Luke Garratt (lgarratt@cisco.com)

Stanislav Smyshlyaev (svs@cryptopro.ru)
Nick Sullivan (nick@cloud�are.com)

Christopher A. Wood (cawood@apple.com)
Liliya Akhmetzyanova (lah@cryptopro.ru)

CFRG
IETF 104, March 2019, Prague

draft-irtf-cfrg-re-keying (CFRG) 1 / 11



Overview

Brief overview

Motivation

Most security mechanisms completely depend on randomness.

But PRNGs can break or contain design �aws/bugs/backdoors.

E.g. Debian bug, Android's JCA PRNG �aw, Dual_EC_DBRG.

Di�cult to detect; need a safety net to avoid system compromise.

⇒ provide a solution to improve any call for entropy.

The construction

When randomness is needed, instead of CSPRNG output G(n) use

G′(n) = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

draft-irtf-cfrg-re-keying (CFRG) 2 / 11



Changes in -04 version

Changes in -04 version: minor changes

Security considerations

�Hence, it is recommended to generate a key speci�cally for the
purposes of the de�ned construction and not to use it another way.�

Terms

For the Expand function a more appropriate term �variable-length
output PRF� is now used.

draft-irtf-cfrg-re-keying (CFRG) 3 / 11



Experimental results

Experimental results

Conditions of the experiment

Extract and Expand on HKDF (with SHA256) and on CMAC.

Macbook Pro, a 3.3 GHz Intel Core i7 CPU and 16GB of RAM.

Compute the signature once, reuse it for all subsequent extractions.

By varying the number of loops, we can measure the rate at which
continued use amortizes the signature computation cost.

B = 32, 128, 256, 1024 output random bytes (common extraction
lengths for protocols such as TLS).

draft-irtf-cfrg-re-keying (CFRG) 4 / 11



Experimental results

Collect values of overhead (in comparison with calling only G(L)
for the same number of loops).

100 101 102 103 104

Extraction Count

102

103

104

105

106

107

E
x
tr

a
ct

io
n
 T

im
e
 O

v
e
rh

e
a
d
 [

n
s]

ccrandom_wrapper_test_hmac_256

ccrandom_wrapper_test_cmac_16

100 101 102 103 104

Extraction Count

103

104

105

106

107

E
x
tr

a
ct

io
n
 T

im
e
 O

v
e
rh

e
a
d
 [

n
s]

ccrandom_wrapper_test_hmac_256

ccrandom_wrapper_test_cmac_16

100 101 102 103 104

Extraction Count

103

104

105

106

107

E
x
tr

a
ct

io
n
 T

im
e
 O

v
e
rh

e
a
d
 [

n
s]

ccrandom_wrapper_test_hmac_256

ccrandom_wrapper_test_cmac_16

100 101 102 103 104

Extraction Count

104

105

106

107

E
x
tr

a
ct

io
n
 T

im
e
 O

v
e
rh

e
a
d
 [

n
s]

ccrandom_wrapper_test_hmac_256

ccrandom_wrapper_test_cmac_16

draft-irtf-cfrg-re-keying (CFRG) 5 / 11



Experimental results

Observations

The cost levels out towards an asymptote at approximately 1000
loops.

At this point, both KDF variants perform nearly equally well.

Cost: from nanoseconds to microseconds compared to baseline
algorithm G.

Relative cost is minor with respect to cryptographic operations in
protocols such as TLS.

Added to the updated eprint.iacr.org/2018/1057 as Appendix.

Summary

Caching the signature output is critical for performance.

There's no point for cardinal changes of the construction.

The construction looks quite well from the performance point of
view � keep it as it is.

draft-irtf-cfrg-re-keying (CFRG) 6 / 11



Security assessment

Security assessment

The paper

L. Akhmetzyanova, C. Cremers, L. Garratt, S. Smyshlyaev.
½Security Analysis for an Improved Randomness Wrapper�.
Cryptology ePrint Archive: Report 2018/1057,
https://eprint.iacr.org/2018/1057

Summary for the initial version (November 2018)

Complete proofs for all three security properties declared in the
draft.

But, as said at IETF 103, something with the assumptions could
still be improved.

draft-irtf-cfrg-re-keying (CFRG) 7 / 11



Security assessment

Changes in the updated version of the paper

Cryptology ePrint Archive: Report 2018/1057,
https://eprint.iacr.org/2018/1057 � updated in March 2019.

Summary of changes

Further relaxation of assumptions on the primitives.

The model re�ects real-world conditions and the desired security
properties declared in the draft.

If the adversary can learn outputs of G(L) but cannot control them
� a completely �nished proof without any questionable
assumptions has been obtained.

New: to address an adversary capable of controlling G(L) we added
the analysis for the modi�ed version of the construction (see next
two slides).

draft-irtf-cfrg-re-keying (CFRG) 8 / 11



Security assessment

Strengthening the proof

During the further analysis it was found that one modi�cation of the
scheme can provide security in a stricter model, assuming that
adversaries can control PRNG outputs.

In the current version (hashed signature as a �message� input to
HMAC) we should expect more from the HMAC.

If we model HMAC as a random oracle, it won't be a problem.

But we can do even better.

It is possible to obtain security proofs even in case of that stronger
adversary in a completely honest model.

draft-irtf-cfrg-re-keying (CFRG) 9 / 11



Security assessment

Proposed change: swapping two inputs of �Extract�

Change

G′(n) = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

to

G′(n) = Expand(Extract(H(Sig(sk, tag1)),G(L)), tag2, n),

The modi�ed proof for this has been prepared, addressing also the
case of an adversary capable of controlling G(L).

All other security properties of the construction remain proven.

Performance increases in default cases: if Extract=HKDF-Extract,
we'll be able to cache not only H(Sig(sk, tag1)), but even an
intermediate value of HMAC calculation (after processing K⊕ ipad
and K⊕ opad during the HMAC calculation).

draft-irtf-cfrg-re-keying (CFRG) 10 / 11



Current state and plans

Current state and plans

draft-irtf-cfrg-randomness-improvements
�Randomness Improvements for Security Protocols�

Only one question left.

Additional analysis of the proposed change (swapping the
�Extract� inputs) will be made.

Plan: to get a version that is ready for a RG Last Call before May.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Backup slides

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Brief overview

Motivation

Most security mechanisms completely depend on randomness quality.
But PRNGs can break or contain design �aws.

Bugs: Debian bug, Android's JCA PRNG �aw.

Backdoors: Dual_EC_DRBG.

Any hardware RNG can degrade over time.

Vulnerable joint system entropy pools.

⇒ it's better to have a safety net to avoid system compromise.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Brief overview

Rationale

�NAXOS trick� (LaMacchia, Brian et al., �Stronger Security of
Authenticated Key Exchange�).

Direct access to private keys is not always possible, no APIs.

Reusing signature keys outside of intended scope is not a good
practice in general. So a very careful analysis is needed.

Provide a ready-to-use solution, not requiring further deep analysis.

⇒ provide a solution such that any call for entropy would better be
improved in a described way.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

The construction

Let G(·) � the output of some CSPRNG. When randomness is needed,
instead of G(n) use

G′(n) = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

Intermediate values (including G(L) and Sig(sk, tag1)) must be kept
secret.

tag1: Constant string bound to a speci�c device and protocol in
use (e.g. a MAC address).

tag2: Non-constant string that includes a timestamp or counter.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Experimental results

Comments about signature caching in the I-D

�Sig(sk, tag1) may be cached. In that case the relative cost of using
G'(n) instead of G(n) tends to be negligible with respect to
cryptographic operations in protocols such as TLS. A description of the
performance experiments and their results can be found in the
appendix of [SecAnalysis].�

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Security assessment

�A security analysis was performed in [SecAnalysis]. Generally
speaking, the following security theorem has been proven: if the
adversary learns only one of the signature or the usual randomness
generated on one particular instance, then under the security
assumptions on our primitives, the wrapper construction should output
randomness that is indistinguishable from a random string.�

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Desired security properties

1 If the CSPRNG works �ne, that is, in a certain adversary model
the CSPRNG output is indistinguishable from a truly random
sequence, then the output of the proposed construction is also
indistinguishable from a truly random sequence in that adversary
model.

2 An adversary Adv with full control of a (potentially broken)
CSPRNG and able to observe all outputs of the proposed
construction, does not obtain any non-negligible advantage in
leaking the private key, modulo side channel attacks.

3 If the CSPRNG is broken or controlled by adversary Adv, the
output of the proposed construction remains indistinguishable from
random provided the private key remains unknown to Adv.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Wrapper generalization

Let G(·) � the output of some CSPRNG. When randomness is needed,
instead of x = G(n) use

x = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

Moving in -01 from KDF-PRF (-00) to Extract-Expand (e.g., HKDF)
to deal with the limit on extracted randomness per invocation.

Tags prevent collisions across private key operations:

tag1: Constant string bound to a speci�c device and protocol.
Ties the outputs to a particular environment.
Sig(sk, tag1) can be cached (but must never be exposed) � for
performance reasons, for eliminating additional operations with sk.

tag2: Dynamic string � timestamp, counter, etc.
Ensures that outputs are unique even if the input randomness
source degenerates to constant.

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Relaxed requirements for a signature scheme

There was a strict requirement in -00 to the signature scheme:
½Moreover, Sig MUST be a deterministic signature function, e.g.,
deterministic ECDSA�.

It has been relaxed, since the digital signature procedure can use its
own entropy source: ½or use an independent (and completely reliable)
entropy source, e.g., if Sig is implemented in an HSM with its own
internal trusted entropy source for signature generation.�

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Adversary model

The adversary wants to:

distinguish a certain output of the construction from random.

The adversary can

choose tag1 and tag2 from the sets T1 and T2 for all queries;
learn values generated by the inner CSPRNG or even select its
values;

select any output of the construction (not necessarily the �nal one)
for attack;

ask to reveal either the values generated by the inner CSPRNG or
the private key sk (but not both) for attacked output

� we believe that the model perfectly re�ects practice (and is much
stronger than in practice in fact).

draft-irtf-cfrg-re-keying (CFRG) 11 / 11



Current state and plans

Assumptions

No problems in the random oracle model for KDF. But we can do
better.
. . . with several additional assumptions:

Extract(x, y) is indistinguishable from random function for known
x and unknown y, and vice versa.

There is no proof of such a property for HKDF-extract(salt, IKM),
though it's reasonable to expect such a property.
Will try to prove it or make minor changes to the construction.

Intermediate values of Sig(sk, tag1) are kept secret during the
computations (I-D requires that implementations do this).

sk is never used to sign values from T1 outside of the construction,
limits on T1 (I-D requires that implementations do this).

draft-irtf-cfrg-re-keying (CFRG) 11 / 11


	Overview
	Changes in -04 version
	Experimental results
	Security assessment
	Current state and plans

