In-Network-Processing
in Industrial Networks
Klaus Wehrle
Networked control
- Control loops at ultra low latency

Collect Process Data
- High data rate
- Data stream processing
- s/t immediate feedback

Offline Data Analysis
- Model extraction
- Data mining
- Machine learning
- Feedbacks new models for previous tasks

Source: © ADI
Low Latency Networked Control Loops

- **Networked control via edge cloud**
 - Remote cloud not feasible
 - Edge cloud still has higher latency – often missing real-time capability

- **Task separation: fast reaction by INP – slow processing in cloud**
 - Use computation in the network to execute simple tasks
 - Push simplified control algorithm (reflex) to the switch
 - Main control algorithm stays in edge cloud to do delay-insensitive adaptation
 - Cloud updates reflex if necessary, e.g. latency change, process is mobile, etc.
Academic Example: Balancing an Inverted Pendulum

Edge-cloud-based Control

Internet Switch

Latency too high for control
Academic Example: Balancing an Inverted Pendulum

Latency ok

control reflex
Two Real-world Examples

- **Arc welding robots**
 - Control loops
 - Single-digit millisecond latency
 - Multiple sensor sources
 - HD and infrared camera
 - Current draw of light arc
 - Actuators
 - Robot positioning
 - Light arc voltage

- **Mobile robot cooperation**
 - Control loops
 - Positioning coordinated by many inputs
 - e.g. indoor coordinate system, camera, etc.
 - In-network coordinate transformation
 - Human in the loop detection (safety zone)
 - e.g. logical safety loop among cameras, lasers, Lidar
 - Robot interaction via multiple sensors
 - Augmented Reality...
Data Stream Processing

Collection and Analysis of Process Data

- Data-driven improvement of production and efficiency
 - Collect every data item the process and machines are emitting
 - Derive immediate feedback on process status and product quality
 - Realtime-feedback for production process

- Problem: Data rate of produced process data
Real-world example: Fine blanking

- Decoiler
 - Sampling: 2.5-5kHz
 - Data rate: 45-90 Mbps
- Leveler
 - Data not interesting
- Lubricator
 - 64 signals at 32bit
 - Sampling: 5 kHz
 - D. Rate: 10 Mbps
- Press
 - Infrared camera: 160 Mbps
 - Press control/sensors: 25 Mbps
 - Vibr. Sensor: 1 Mhz, 150Mbps
 - ~500 Mbps per 4K camera

Glebke, Henze, Wehrle, Niemietz, Trauth, Mattfeld, Bergs: „A Case for Integrated Data Processing in Large-Scale Cyber-Physical Systems“, International Conference on System Sciences (HICSS), Wailea, HI, January 2019
Data Stream Processing at Line-Rate

- Collection and Analysis of Process Data
 - Data-driven improvement of production and efficiency
 - Collect every data item the process and machines are emitting
 - Derive immediate feedback on process status and product quality
 - Realtime-feedback for production process
 - Problem: Data rate of produced process data

- Reduce/process the data as early as possible in the network
 - Apply filtering, aggregation, compression, classification on the data path
Proposed Framework: INP/COIN for Industrial Networking

- Enable computation in the network elements (switches, access points, etc)
 - For simple control tasks
 - For filtering, aggregating, etc. data on the path to the cloud (at line rate)
 - For boosting data analysis in a data center (not discussed here)

- Hierarchical placement of computational tasks
 - Simple and predictive computation in the network
 - Use to satisfy tight constraints (e.g. fast response)
 - Long-term computation, state management and coordination in the cloud
 - Use for complex tasks
ToDos for Academia and/or IETF for Enabling COIN for Industrial Networks

What do we need?

- More computational capabilities
 - some math operations would be nice and a bit of state
 - simple computations are ok, must not be Turing complete 😊
 - at line-rate or at least predictable execution times

- Configuration, monitoring, and management
 - Interface: cloud ↔ switch, northbound ↔ southbound
 - “OpenFlow” for INP/COIN
 - Management and configuration of INP/COIN elements
 - State management
 - Mobility of processing elements

- Transport protocol issues
 - Breaking of end-to-end principle
 - Encrypted data?
Implementing LQR control in a network element

• You may wakeup now

• First shot: Implement it in (e)BPF
 - Can be deployed on Linux hardware (XDP)
 - Runs on Netronome SmartNICs
 - Is basically writing C code with some limitations
 - Pretty easily done

• Second shot: Can we do it in P416?
P4 implementation

• P4 (also BPF) is not made for doing math
 ▪ Only integer support
 • Support for bit-depth, padding, and operands platform specific
 ▪ Control problems typically specified over real numbers
 • We assume all numbers to be scaled by a fix-point \(\rightarrow \) Integer
 • Computations need to account for this fix-point
 ▪ Multiplications of two fix-points must be divided by the fix-points
 ▪ Can easily overflow bit-depth
 ▪ No divisions on signed integers

• Control matrix stored as a table
 ▪ Lookup by flow 4-tuple
Controller computation in P4

- **Given a 1x4 matrix (K), and a 1x4 sensor reading (u)**

 \[-K^T \cdot u \]

- **In P4 this becomes**

  ```
  myctrl = (((int<64>)-ctrl.k0 * (int<64>))hdr.sensor_data.data0) + 
  (((int<64>)-ctrl.k1 * (int<64>))hdr.sensor_data.data1) + 
  (((int<64>)-ctrl.k2 * (int<64>))hdr.sensor_data.data2) + 
  (((int<64>)-ctrl.k3 * (int<64>))hdr.sensor_data.data3));
  ```

  ```
  if (myctrl < 0) {
    hdr.actuator_data.data = (int<32>)(
      ((int<64>)(bit<64>)(myctrl * -1) / SCALINGFACTOR))
      * -1);
  }else {
    hdr.actuator_data.data = (int<32>)(
      (int<64>)(bit<64>)(myctrl) / SCALINGFACTOR)
  );
  }
  ```

- **Ugly but does the job**

 Ugly but does the job
Evaluation

- **We compile the P4 switch description to BPF**
 - Using P4C-XDP
 - https://github.com/vmware/p4c-xdp

- **We evaluate in a testbed**
 - Can be emulated via mininet if desired

Diagram:
- Controller
- Linux Switch
- vETH
- Process

Shape link via Linux traffic control
Offload XDP-controller here
Evaluation

- We use a real-time simulation of an inverted pendulum
 - Other systems possible, controller is independent of the system

- Keep the pendulum in an up right position in the center
 - Like balancing a pen on your palm

- Sensors acquire
 - Position, change in position, angle, change in angle

- Actuator
 - Controller can move the cart
Evaluation

- **We measure the Quality-of-Control**
 - How fast can we move the cart to the center
 - How stable is the rod around the upright position

- **Without any delay**
 - Smooth transition
 - ~4 secs
Evaluation

- **Add 5ms of delay**
 - Does not stabilize
 - Wobbles back and forth
 - Rotates 360°
• Modified controller that accounts for delay
 - We add 20ms delay
 - Heavy back end forth at the start
 - Stabilizes with slight wobbling
 - 4 sec

• Both not optimal
 - No more back end forth
 - Eventually stabilizes
 - >5 sec to stabilize
Activate P4-controller within the switch

- Intercepts packets on behalf of the controller

- No wobbling
- Stabilizes within 4 secs
- As good as the real controller
Future Challenges

- **Would be desirable to change tables from data path**
 - Accounting for delay bloats the matrices
 - Past computations need to be saved
 - Possible in BPF but (currently) not from the SmartNIC

- **Networked control good for collaborative control**
 - Requires sharing recent computations with other controllers
 - Is it enough to do this from the control plane?
 - Better generate new packet from data path (PSA?)
Future Challenges

• What about other control problems?

• Audio processing heavily used
 ▪ Data spread over multiple packets
 ▪ Detect vibrations
 ▪ Must equipment be maintained?

• Visual processing also heavily used
 ▪ Many packets
 ▪ Computer vision can become heavy
Conclusion

Is it possible to implement a controller in a network element?

With typical data plane languages such as P4?

- **Short answer: Yes, you can!**
 - Math is a hassle in P4
 - Advanced problems currently lack functionality

- **Which other tasks could be offloaded to the network?**