DetNet

Bounded Latency-03

draft-finn-detnet-bounded-latency-03

Norman Finn, Jean-Yves Le Boudec, Ehsan Mohammadpour,

Huawei EPFL EPFL

Jiayi Zhang, János Farkas, Balázs Varga

Huawei Ericsson Ericsson

IETF 104 DetNet WG

Prague, 27 March, 2019

1

A reminder to new attendees ...

- DetNet is about an **upper bound** on end-to-end latency **not** low average latency.
- Bounded latency leads to the ability to compute exactly how many buffers are required to achieve zero congestion loss.
- Feedback that slows down flows to avoid congestion is not an option for the application space of interest to DetNet.
- Mathematically sound assurances can be given on latency and congestion loss.

Major changes from -02 to -03

- The draft has been made Informational.
- Section 3.1 is added to address the dynamic and static flow creations.
- Section 6.4 is updated for delay bound calculation in TSN with ATS.
 - Flow admission control is added in Section 6.4.1.
- Section 6.5 is simplified to address IntServ end-to-end delay bound calculation.

Section 3.1: Static and Dynamic flow creations

- The **Static** flow admission was already described in boundedlatency-02.
 - All the flows information is available.
- The **Dynamic** flow admission is added for the per-class scheduling with regulators in Section 6.4.1.
 - A flow can be added and removed.

Per-class dynamic flow admission decision

- A flow is admitted if at all the nodes it traverses, the following conditions hold:
 - $r_f + R_acc \le R$
 - $b_f + b_acc \le b_t$

• If one of the above equations does not hold at any of the nodes flow f is traversing, the flow is rejected.

Counter updates for per-class dynamic flow admission

- When a flow is admitted, the counters are updated:
 - R_acc = R_acc + r_f
 - b_acc = b_acc + b_f
- When a flow leaves, the counters are updated:
 - R_acc = R_acc r_f
 - b_acc = b_acc b_f

Per-class one hop delay bound calculation

One hop delay book not for for for .

$$C_{1,2} = \sup_{\substack{f'\\f'}} \{d_f = T + \frac{b_t - L_{min}^f}{R} + \frac{L_{min}^f}{c}\}$$

Per-class end-to-end delay calculation

Endatesendedelayboundaforflow:f:

R: Regulator Q: Queuing Subsystem

27/03/2019

Ref: [Mohammadpour, Stai, Mohiuddin, Le boudec, 2018]

Further updates planned

- Improvement of the delay bound calculation (both dynamic and static).
- Formal delay analysis of CQF.
- Per-node buffer size calculation.

Next step

• Call for WG adoption?

Thank you