Deterministic VPN

draft-chen-detnet-det-vpn-00

Zhe Chen (Huawei)
Li Qiang (Huawei)
Prague
2019.3
Motivations of The Draft

• It would be COMMON that DetNet services and L2/L3 VPNs are integrated together in real-world deployments
• Such integration MAY raise novel requirements to current protocols
• This draft aims to initiate discussions on such requirements and corresponding protocol extensions
DetNet-VPN Integration

• **DetNet recap**: bounded end-to-end latency, ultra-low data loss rate ...
• **VPN recap**: isolation of L2/L3 addresses and traffic ...
• **DetNet-VPN integration**: provide bounded end-to-end latency and ultra-low data loss rate from CE to CE, and isolate L2/L3 addresses and traffic simultaneously, which are useful in:
 • Mobile backhaul networks
 • Enterprise private networks (especially TSN networks)
Mobile Backhaul Networks

• Why VPN:
 • Traffic isolation for different QoSes (e.g., voice traffic and data traffic)
 • Mobile operators may rent third-part ISPs’ networks to carry their traffic (i.e., address isolation is needed)

• Why DetNet:
 • Best-effort IP/MPLS forwarding provides poor QoS performance
 • There are many TDM-based sessions in mobile networks (i.e., E1), unbounded-jitter transmission hurts them more seriously

![Diagram of Mobile Backhaul Networks]

Figure 1
Enterprise Private Networks (especially TSN networks)

- Why VPN:
 - ISP should provide address and traffic isolation for different enterprises

- Why DetNet:
 - Provide SLAs for enterprise's traffic, especially an enterprise aims to inter-connect its two TSN networks by using ISP’s network

- 5GLAN for TSN is one of those scenarios
Deterministic VPN

- Target: 1) address/traffic isolation; 2) CE-to-CE bounded latency and ultra-low data loss rate
- To achieve 1): reuse existing technologies, e.g., BGP/MPLS IP VPN, E-VPN, SR-MPLS VPN, SRv6 VPN, ...
- To achieve 2):
 - Each interface of PE and P nodes has three cyclic scheduled queues
 - To support long link propagation delay, all nodes SHOULD maintain frequency synchronization instead of time synchronization
 - All packets sent from the upstream router in a specific cycle MUST be sent by the downstream router within another (one) specific cycle, thus achieving bounded latency
 - A data plane mechanism is needed to indicate which upstream node's cycle a packet belongs to
(Possible) Protocol Extensions

- **Data plane:**
 - LSP Tunnel: require multiple MPLS labels per LSP to achieve bounded latency, please refer to [draft-chen-mpls-cqf-lsp-dp-00] for more details
 - SR-MPLS Tunnel: require multiple SIDs per node/adjacency to support bounded latency
 - SRv6 Tunnel: require new type(s) of End SIDs to support bounded latency

- **Control plane:**
 - MP-BGP: to advertise VPN routes, require new BGP path attributes for DetNet-VPN descriptions
 - RSVP-TE: to support multiple-labels allocation and signaling (per LSP)
 - IGP: to advertise DetNet related SR-MPLS/SRv6 SIDs

<table>
<thead>
<tr>
<th></th>
<th>LSP Tunnel</th>
<th>SR-MPLS Tunnel</th>
<th>SRv6 Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-BGP</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSVP-TE</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGP</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

✓: Need extensions
Next Steps

- Suggestions and comments on this work are highly needed ...
- We will define corresponding protocol extensions in separate documents
Thank You!