Link Layer Addresses Assignment Mechanism for DHCPv6

- IETF-104 (Prague)
- Wednesday, 27 March 2019
- Bernie Volz
- draft-bvtm-dhc-mac-assign

Last Edit: 2019-03-20 14:15 EDT (BV)

Background (1/3)

- RFC 7241 defines cooperation between IEEE 802 and IETF and there are periodic discussions
- IEEE 802c split "local" MAC address space into 4 quadrants to provide for different allocation schemes
- IEEE 802cq is working on defining allocation mechanisms
- Several from IETF leadership (Ralph Droms, Russ Housley, Suresh Krishnan) thought that DHCPv6 might be usable as a MAC address allocation (802cq) mechanism

Background (2/3)

- Ralph Droms (IETF) reached out to Bernie
- Tomek and Bernie discussed and decided to work on issue, published draft-bvtm-dhc-mac-assign
- More background about 802c/cq in Pat Thaler's "
 Emerging IEEE 802 Work on MAC Addressing"
 slides from IETF-96 (
 https://datatracker.ietf.org/meeting/96/materials/slides-96-edu-ieee802work-0/)
- Tomek and Bernie presented to IEEE RAN meeting in late May 2018
- Call for adoption to DHC WG failed (Jan 2019)

Background (3/3)

- IETF-IEEE 802 coordination call in February discussed work
 - While DHCPv6 link layer address assignment does not fulfill *all* requirements of P802.1CQ, it is a sound solution for some use cases, and P802.1CQ intends to adopt it

Use Cases for MAC addresses

- Hypervisor to allocate the Virtual Machines
 - Lots of VMs
 - May have short or long life
 - May be possible to reuse addresses for different network segments based on data center
- IoT devices
 - Often short lived/disposable
 - Little need for global MAC address
- Individual clients

Why DHCPv6?

- Existing infrastructure: protocol, network, tools
- Servers already know how to manage and assign resources
- Protocol easily extensible
- We're in DHC WG ...

draft-bvtm-dhc-mac-assign

- Focused on Hypervisor use case where Hypervisor needs a block of MAC addresses to assign to VMs
- Can also be used by actual clients, but requires:
 - IPv6 support
 - A short-term temporary MAC address for link-local IPv6 address to request DHCPv6 assigned MAC address
 - Client should use a non-link-layer address for DUID (DUID-EN or DUID-UUID)

Defines 2 New DHCPv6 Options

- IA_LL (Identity Association for Link Layer Addresses) Option
 - Similar to IA_NA and IA_PD
 - Used as container option for requested / assigned link-layer addresses
- LLADDR (Link Layer Addresses) Option
 - Similar to IAADDR and IAPREFIX
 - Used to request/assign link-layer addresses

IA_LL Option

- IAID identifies instance of IA_LL option to allow for many
- T1 is renewal time (from "now" in seconds)
- T2 is rebinding time (from "now" in seconds)
- IA_LL-options contains one or more IA_LL options

LLADDR Option

```
0
          OPTION LLADDR
                                            option-len
       link-layer-type
                      link-layer-address
                       extra-addresses
                       valid-lifetime
                       LLaddr-options
```

- Link-layer-type and link-layer-len specify requested link-layer address
- Link-layer-address specifies starting address requested or assigned
- Extra-address specifies number of additional addresses (0 for single address)
- Valid-lifetime lifetime of assignment (from "now" in seconds)
- LLaddr-options could contain future options specific to assignment

Client / Server Operation (1)

- DHCPv6 essentials the same as address / prefix delegation
- But a bit simpler overall
 - Confirm, Decline, and Information-Request client messages not used

Client / Server Operation (2)

- For hypervisor model
 - Hypervisor is client, but does not use resulting link-layer addresses
 - Hypervisor could obtain large blocks or one link-layer address per VM as needed
 - Hypervisor provides link-layer address to VMs
 - VMs could do standard DHCPv6 for IPv6 addresses/delegated prefixes or DHCPv4

Client / Server Operation (3)

- If end client (e.g. IoT) wants a link-layer address
 - Could use Temporary MAC address for anonymity (see https://mentor.ieee.org/802.11/dcn/02/11-02-010-00-000i-temporary-mac-address-for-anonymit
 -) to do DHCPv6 to get "long term" link-layer address assignment

<u>y.ppt</u>

- Clarify client must not use DUID-LL/LLT based on temporary MAC
- Client then uses assigned link-layer address for normal DHCPv6, DHCPv4, ...

Next Steps

- Is this work of interest to DHC?
 - Call for adoption failed in Jan 2019
 - IEEE would like to see work progress (intends to adopt for some use cases)
 - Should we try for another call for adoption?
- Provide feedback to authors about draft
- Carlos will discuss an extension to this work

Question or comments ...

&

THANKS