Problem Statement of Multi-requirement Extensions for DHCPv6

Gang Ren, Lin He, Ying Liu

Tsinghua University & CERNET

rengang@cernet.edu.cn

he-l14@mails.tsinghua.edu.cn

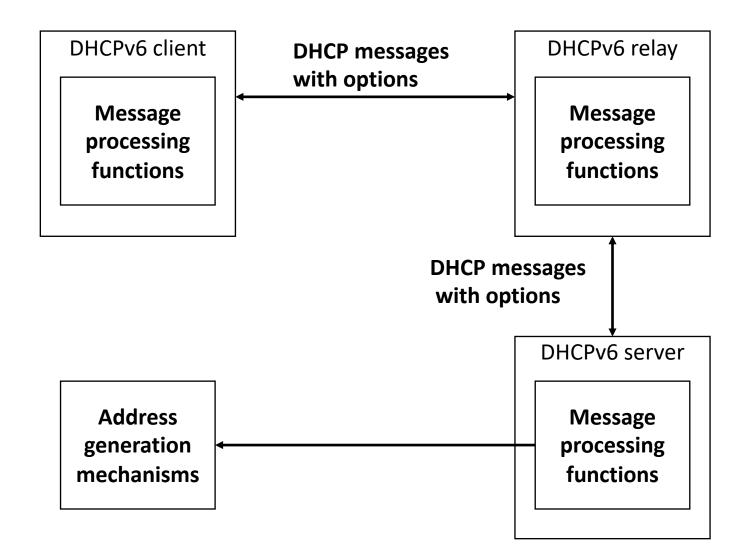
liuying@cernet.edu.cn

DHC, ietf104, Mar 2019

Background

- IPv6 address generation is closely related to the manageability, security, privacy protection, and traceability of the networks.
- DHCPv6 can be extended by new options, messages, and protocols.
- DHCPv6 server software provides interfaces to allow for user-defined extensions.
- Modifying open-source DHCPv6 servers is difficult.
- We need a general insight of how to solve the extension problem better.

Current Extension Practices (1)


- Standardized and non-standardized DHCPv6 extension cases
 - Extended options
 - DNS [RFC3646], SNTP [RFC4075], NIS [RFC3898], FQDN [RFC4704], information refresh time [RFC4242], etc.
 - Extended messages
 - Active leasequery [RFC7653], etc.
 - Extended entities
 - Radius server [RFC7037], etc.

Current Extension Practices (2)

- Current DHCP server software cases
 - Cisco CPNR extension APIs
 - Extension points
 - http://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/net work_registrar/9-0/dhcp/guide/DHCP_Guide.html
 - Kea DHCP hook mechanism
 - Write callout functions to attach to the hook points
 - https://jenkins.isc.org/job/Kea_doc/doxygen/

• ...

DHCP general model

Possible Extensions (1)

- DHCP messages
 - Status: Define new messages
 - e.g., active leasequery
 - Problem: all DHCP messages are in plaintext
 - Lack of privacy protection on messages
 - Privacy Considerations for DHCPv6 [RFC7824]
 - Possible solutions
 - Encryption of DHCP messages

Possible Extensions (2)

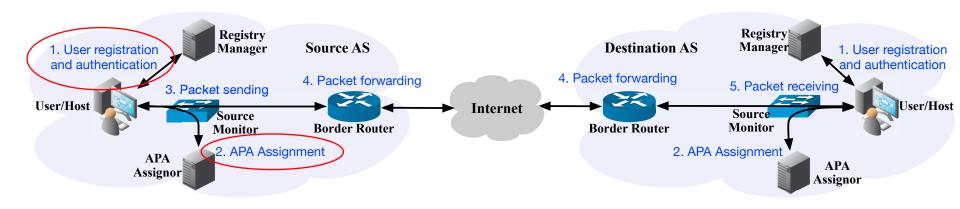
Options

- Status: Define new options to convey new parameters
 - Vendor-specific information option
- Problem: parameters may come from users
 - These parameters are uncertain and may change
- Possible solutions
 - Clients provide interfaces to obtain user parameters
 - Few such interfaces
 - Relays obtain new parameters first and add them into requests
 - Need the support of other protocols

Possible Extensions (3)

- Message processing functions
 - Status: Some servers provide interfaces to allow for user-defined extensions
 - Customize how servers handle and respond to DHCP requests
 - Problem: not all DHCP software consider this extension
 - Clients
 - Relays
 - Servers
 - Possible solutions
 - DHCP software support user-defined extensions

Possible Extensions (4)


- Address generation mechanisms
 - Status: many IPv6 address generation mechanisms exist
 - Temporary [RFC4941], stable privacy [RFC7217/7943], CGA [RFC3972], HBA [RFC5535]
 - Servers usually generate random IPv6 addresses
 - Problem: different networks may need different address generation mechanisms
 - Possible solutions
 - Allow new-defined and different address generation mechanisms to be configured.

Extension Principles

- Do not change the current DHCP general model
- Use simpler interfaces to define and support more extensions
- TBD

Extension Case

- Requirement: IPv6 addresses generated from user identifiers for accountability and privacy^[1]
 - Clients send their user identifiers to servers.
 - 802.1X authentication
 - Relays insert user identifiers into requests
 - Servers generate addresses and assign them to clients.

Changes compared with -00

- Thanks for Bernie's valuable comments:
 - Explain the vendor option issue in the document
 - Provide possible directions to solve problems
 - Remove the reference of secure dhcpv6 and options
 - Use reference 3315bis
 - Change the status of the draft to Informational

Comments?

Thank You!

IETF104, Prague