
End-SystemMulticast in
Decentralized Distributed
Systems

Graydon Hoare and David Mazières

IETF104

Wednesday, March 27, 2018



SCP update

draft-mazieres-dinrg-scp seems to be stabilizing

Also new simplified description of the protocol available
Big open issue: how to disseminate messages?
- Without multicast spec, no hope of interoperability
- Yet unclear existing solutions are secure enough

Recall SCP’s security goals
- Allow secure payments, secure so�ware/firmware/certificate
transparency logs, secure IP prefix delegation, etc.

Today’s talk: the secure multicast problem
- Only questions, no solutions

2 / 18

http://www.scs.stanford.edu/~dm/blog/simplified-scp.html


Example: Bitcoin overlay network
Typical node: 8 outgoing, 117 incoming TCP connections
- Initially get peers from DNS seeds (e.g., seed.bitcoinstats.com)
- Get more in received ADDR commands (up to 1000 peers+timestamps)

Each node divides peers into tried and new tables
Tried table contains known good peers with timestamps
- IPs hashed into 64 buckets of 64 entries each
- Any IPv4 /16 can only hash to one of four buckets
- Eviction from bucket: pick 4 random nodes, send oldest to new table
New table is newly learned or demoted nodes (might not work)
- 256 buckets of 64 nodes each
- Also group by IPv4 /16 that sent us ADDR command
Connection dropped? Connect to random node
- Pick between tried and new with probability depending on number of
good outgoing connections, ratio of new/tried sizes

3 / 18



Eclipse attacks [Heilman15]

Use botnet to own IP addresses in many groups

Connect to victim node 117 times
Send ADDR command with all your own IP addresses
- E�ectively a Sybil attack on overlay network

By controlling what victimminers learn, can:
- Engineer block races (so miners waste time on orphan blocks)
- Facilitate selfish mining attacks

Worse: PoW is unsafe in asynchronous model [Pass’16]
- Eclipse attack can impose arbitrary delays
- Split mining power among disconnected groups
- Allows double-spend by attackers with no hashing power!

4 / 18

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://eprint.iacr.org/2016/454.pdf


What about asynchronous protocols?

Isn’t SCP an asynchronous protocol?
- Yes, unlike PoW, it is safe in asynchronous setting, but. . .
- DoS can induce safety failures in layers above consensus

Example: higher-layer blockchain protocols
- Escrow, payment channels, etc., o�en involve timeouts
(e.g., if no one contests your action for 24 hours, can take funds)

- So blocking disputes lets you steal money

Availability of higher-layer systems can a�ect safety
- E.g., what if you can’t update log for new certificates, or to revoke
vulnerable versions of so�ware?

5 / 18



Overview of P2Pmulticast approaches

Medium-sized end-systemmulticast—e.g., Narada’02
- Formmesh where all nodes have complete member list
- Run routing protocol over mesh to formmulticast trees
- Scales to 1000s(?) of nodes, no security story

Structured tree- or DHT (distributed hash table)-basedmulticast
- Potentially scales tomillions of nodes
- E�icient (don’t receive many redundant messages)
- Brittle in the face of failure (particularly Byzantine)

Unstructured gossip-based protocols
- More robust to failure, but more wasteful (redundant) messages sent
- Scalability depends on partial vs. full view
full view consumes bandwidth to disseminate membership list

- Vulernable to Byzantine failures, particularly with partial view

6 / 18

https://courses.cs.washington.edu/courses/csep561/08au/papers/chu-jsac02.pdf


DHT review

1

2

3

4

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11 Space of 160−bit numbers

[Kademlia’02]

DHTs provide scalable key-value store [Chord,Pastry,Kademlia]
- Each node has a random (e.g., 160-bit) ID
- Store (key, value) pair on nodes with IDs closest to key
- With n nodes in system, each node knows O(log n) (or sometimes O(1))
other nodes, can find key a�er querying O(log n) servers

7 / 18

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://rowstron.azurewebsites.net/PAST/pastry.pdf
http://www.scs.stanford.edu/~dm/home/papers/maymounkov:kademlia.ps.gz


DHT-basedmulticast

[Splitstream’03]

Scribe’02: DHTmulticast based on reverse path forwarding
- Multicast source is node with ID closest to multicast group
- Route a join request to source (up to O(log n) hops)
- At each hop node forwards tra�ic to children
- Interior nodes bear all the forwarding burden
Splitstream’03: Split data into multiple streams
- In forest, each node internal for one stream, leaf for others
- Maybe combine with forward error correction for robustness

8 / 18

https://people.mpi-sws.org/~druschel/publications/Scribe-jsac.pdf
http://rowstron.azurewebsites.net/PAST/SplitStream-sosp.pdf


DHT security [Survey’11]
Sybil attacks – attacker joins multiple times
- Admission control based on CAs, IP prefixes, network characteristics,
join path, quotient cut in social graph, proof-of-work, incentives

- Or SCP shows open systems can circumvent Sybil assumptions
Eclipse attacks (routing table poinsoning)
- Separate optimized & secure/fallback routing table
- Leverage network characteristics
- In-degree/out-degree analysis
- Re-organization regions on joins (invalidating targeted joins)
Routing and storage attacks
- These matter when data is sharded, not fully replicated
- Use iterative routing, independent paths, fiddle with identifier
allocation, CAs, sending requests to whole swarms, fiddle with routing
topology

- Maybe attacks less relevant to today’s applications?
9 / 18

http://disi.unitn.it/~montreso/ds/papers/DhtSecuritySurvey.pdf
https://www.freehaven.net/anonbib/cache/sybil.pdf


Gossip-basedmulticast
Basic idea: send each newmessage to k random peers
- Will quickly propagate to whole system
- But, maintaining list of peers a scalability bottleneck

Scale with “Partial View” protocols, e.g., [HyParView’07]
- HyParViewmaintains separate active & passive peer sets
- Active peers are symmetric and form the gossip network
- Passive peers can replace any failed active peers

HyParViewmaintains passive sets through shu�le protocol
- Forward some active & passive peers through randomwalk
- A�er TTL hops, recipient of shu�le message sends back some peers
- Add newly learned peers to passive set; on overflow drop ones you
sent or drop random ones

Maintains active set by join or repair messages

10 / 18

http://asc.di.fct.unl.pt/~jleitao/pdf/dsn07-leitao.pdf


Biased peer selection

[X-BOT]
Random peer selection can be bad for locality
- Forward message half way around the world to reach your neighbor

Can bias peer selection to favor network locality
X-BOT optimization strategy:
- Node i has o in active set, but thinks c from passive set closer
- Arrange to pair o� owith one of c’s active nodes d
- Still need some fraction of peers random for correctness

Q: Could we bias peer selection for security?
11 / 18

http://asc.di.fct.unl.pt/~jleitao/pdf/srds09-leitao.pdf


Hybrid structured/gossip approaches
Plumtree’07 uses partial views segregated into two groups
- Eager push peers: immediately send all newmessages to these
- Lazy push peers: lazily send just message IDs, possibly in batches, and
have peers request any missing messages

Form a broadcast tree as follows:
- Initialize with random eager push peers, and no lazy ones
- When you first hear a message, add node to eager push peers
- When you hear a duplicate, move peer to lazy push peers

Repair broken tree when you get message ID but not message
- First wait for a timeout period
- Then request message from first node to sendmessage ID
- Also upgrade that sender to eager push peer

Q: Can we securely disseminate message IDs to repair trees?

12 / 18

http://www.gsd.inesc-id.pt/~ler/reports/srds07.pdf


Secure gossip & dissemination

Tolerating malicious gossip [Minsky’03]
- Very BFT-like model tolerates at most t failures
- Assumes k > t honest nodes start with same ground truth
- Idea: path verification (w/o signatures): require t + 1 disjoint paths
- Combine w. sampling schemes to increase e�iciency
- Q: Can to irregular, open-membership systems?

Monitoring w. multiple membership rings [Fireflies’06]
- Classify nodes as correct, crashed, andmalicious
- Assumemalicious is at most fraction p of non-crashed
- Nodes accuse other nodes they believe have crashed
- Falsely accused node canmask some badmembership rings
- Q: Does admission control requirement rule out approach?

13 / 18

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.5767&rep=rep1&type=pdf
http://www.cs.cornell.edu/home/rvr/papers/Fireflies.pdf


Secure overlay networks

Lightweight Intrusion-Tolerant Overlay Network [LITON’06]
- Usemobile ad-hoc like routing protocols for unicast in overlay
- All packets source routed
- Failure detection based on loss/RTT inferred from ACKs
- Quarantine end-to-end bad routes, links forwarding corrupt messages
- Uses flooding, probably vulnerable to underlay attacks
- Q: Can it be adapted to broadcast without amplification attacks?

14 / 18

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.3851&rep=rep1&type=pdf


Ack. compression [Nicolosi’04]

Idea: verify recipients got message without knowing recipients
- Phase 1: Peers join multicast tree, get secure join receipt
- Phase 2: If all peers get message, source can verify
- Otherwise, can get list of missing peers and their IP addresses, and
verify only those peers missedmessages

Leverages signatures based on Gap Di�ie-Hellman groups
- Key property: if σ1 is signature ofm under key y1 and σ2 is signature of
samem under y2, then σ1σ2 is signature ofm under y1y2

Works well on structuredmulticast trees
- Combine public keys on join, signed receipts on ack

Q: Can this be adapted to gossip networks?

15 / 18

http://www.scs.stanford.edu/~dm/home/papers/nicolosi:ack.pdf


Set reconciliation

Many decentralized systems involve multiple senders
- E.g., blockchain protocols with many nodes submitting transactions
- With many transactions, even set of transaction IDs could be big
- Hard to keep tra�ic asymptotically small when scaling gossip

Hash trees or error correcting codes [Minsky’02] could help
- Not e�icient enough

Invertible Bloom filters (IBFs) make practical [Eppstein’11]
- Can subtract one IBF from another to get di�erence
- Use log many IBFs to estimate size of set di�erence
- Lets you reconcile sets with network tra�ic proportional only to set
di�erence size

16 / 18

http://ipsit.bu.edu/documents/BUTR2002-01.pdf
https://www.ics.uci.edu/~eppstein/pubs/EppGooUye-SIGCOMM-11.pdf


Quorum slices [SCP]
SCP forms quorums in open system based on quorum slices
- Invalidates Sybil attack assumption of no physical knowledge of peers
Each node v picks a set of quorum slicesQ(v)
- v only trusts quorums that are a superset of some q ∈ Q(v)
- Include organizations you don’t want to be forked from in every slices

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of
each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

Q: Can you subscribe just to senders you transitively care about?
Q: Leverage trust expressed in quorum slices? e.g., weight:

Definition (Slice weight)
weight(u, v) ∈ [0, 1] is the fraction of node u’s quorum slices
containing node v.

17 / 18

https://www.freehaven.net/anonbib/cache/sybil.pdf


Conclusions

Decentralized protocols needmessage dissemination
- E�icient and scalable to many nodes
- Self-organizing with no central authority
- Byzantine fault-tolerant

Currently a big trade-o� between e�iciency and security
We have building blocks for e�iciency and scalability
- DHT techniques, peer sampling, biased peer selection, lazy push, set
reconciliation, . . .

We have building blocks for security
- Path verification, monitoring/accusation, ack compression, quorum
slices, . . .

But no good solution we can even think of standardizing yet

18 / 18


