Private Discovery with TLS and ESNI

Christian Huitema draft-huitema-dnssd-tls-privacy-00

Assumptions

- TLS 1.3
 - ClientHello +SNI →
 - **Consideration ServerHello + encrypted extensions (encrypted Cert)**
- Encrypted SNI
 - Client-facing Server publishes ESNI public key
 - SNI replaced by ESNI, encrypted with public key
 - Only intended server can decrypt ESNI, forward to designated SNI
- UDP transport based on TLS 1.3
 - DTLS or QUIC

Basic Idea: Multicast ESNI

- Learn SNI encryption key of designated server,
- Broadcast / Multicast first UDP Packet,
 - Includes TLS 1.3 ClientHello + ESNI
- Servers listen to multicast requests
 - Trial decryption of ESNI
 - If decrypted & matches local value, send back unicast response
- Establish 1-1 connection
- Maintain TLS and ESNI guarantees of security, and privacy

Rely on Secret Discovery Key

- Standard ESNI publishes ESNI public key in DNS
 - Would allow anyone to discover whether server is on-line
- Fix: provision ESNI public key only to authorized clients
 - Rename "ESNI public key" as Discovery Key, meant to be kept secret
 - Only the server knows the private key
- Result: resilience
 - If discovery key compromised, server can be discovered but clients remain private

Optional two-phase model

- What if server is not using DTLS or QUIC?
- Fix: discover DNS server
 - Use DNS over DTLS or DNS over QUIC
 - Discover private DNS server using private discovery (TLS, ESNI)
 - Private DNS transactions to get DNSSD data for the server

Remaining gap, scaling issues

- Too many messages?
 - Client sends one discovery broadcast per target server
 - But in "application level" scenarios, given client is interested in few servers
- Polling for servers?
 - If server not present when query is sent, client will have to retry
 - But in "peer to peer" scenario, roles are symmetric, peer polls on arrival
- Possible fix for next version: server announce
 - Add "I am here" message, verifiable with server discovery key
 - Every client tries verifying with every known discovery key
 - If client detects server, establishes connection immediately

Remaining gap, forward privacy

- If public discovery key is compromised:
 - Server can be discovered or tracked using active queries
 - Clients remain private
- If private discovery key is compromised
 - Server can be spoofed
 - Old logs can be analyzed
- Possible fix: frequent key rotations
 - Will require provisioning mechanism

Next steps?