Private Discovery with TLS and ESNI

Christian Huitema
draft-huitema-dnssd-tls-privacy-00
Assumptions

• TLS 1.3
 • ClientHello +SNI ➔
 • ← ServerHello + encrypted extensions (encrypted Cert)

• Encrypted SNI
 • Client-facing Server publishes ESNI public key
 • SNI replaced by ESNI, encrypted with public key
 • Only intended server can decrypt ESNI, forward to designated SNI

• UDP transport based on TLS 1.3
 • DTLS or QUIC
Basic Idea: Multicast ESNI

• Learn SNI encryption key of designated server,
• Broadcast / Multicast first UDP Packet,
 • Includes TLS 1.3 ClientHello + ESNI
• Servers listen to multicast requests
 • Trial decryption of ESNI
 • If decrypted & matches local value, send back unicast response
• Establish 1-1 connection
• Maintain TLS and ESNI guarantees of security, and privacy
Rely on Secret Discovery Key

• Standard ESNI publishes ESNI public key in DNS
 • Would allow anyone to discover whether server is on-line

• Fix: provision ESNI public key only to authorized clients
 • Rename “ESNI public key” as Discovery Key, meant to be kept secret
 • Only the server knows the private key

• Result: resilience
 • If discovery key compromised, server can be discovered but clients remain private
Optional two-phase model

• What if server is not using DTLS or QUIC?
• Fix: discover DNS server
 • Use DNS over DTLS or DNS over QUIC
 • Discover private DNS server using private discovery (TLS, ESNI)
 • Private DNS transactions to get DNSSSD data for the server
Remaining gap, scaling issues

• Too many messages?
 • Client sends one discovery broadcast per target server
 • But in “application level” scenarios, given client is interested in few servers

• Polling for servers?
 • If server not present when query is sent, client will have to retry
 • But in “peer to peer” scenario, roles are symmetric, peer polls on arrival

• Possible fix for next version: server announce
 • Add “I am here” message, verifiable with server discovery key
 • Every client tries verifying with every known discovery key
 • If client detects server, establishes connection immediately
Remaining gap, forward privacy

• If public discovery key is compromised:
 • Server can be discovered or tracked using active queries
 • Clients remain private

• If private discovery key is compromised
 • Server can be spoofed
 • Old logs can be analyzed

• Possible fix: frequent key rotations
 • Will require provisioning mechanism
Next steps?