
Working Group 
Draft for 
TCPCLv4
Brian Sipos

RKF Engineering Solutions

IETF104



Motivations for Updates to TCPCL
1. During implementation of TCPCLv3, Scott Burleigh found 

an ambiguity in bundle acknowledgment and refusal.

2. For use in a terrestrial WAN, author has a need for TLS-
based authentication and integrity. TCPCLv3 mentions TLS 
but does not specify its use. IETF strongly in favor of TLS 
for new general-use protocols.

3. Reduced sequencing variability from TCPCLv3

4. Adding extension capability for TCPCL sessions and 
transfers.



Goals for TCPCLv4
•Do not change scope or workflow of TCPCL.

◦ As much as possible, keep existing requirements and 
behaviors. The baseline spec was a copy-paste of 
TCPCLv3.

◦ Still using single-phase contact negotiation, re-using 
existing headers and message type codes.

◦ Allow existing implementations to be adapted for 
TCPCLv4.



Last Draft Edits
•Changes are in draft-ietf-dtn-tcpclv4-11.

•Removed separate XFER_INIT message and moved transfer extension items 
into first XFER_SEGMENT message (when START bit is set).
◦ This avoids overhead of extra message and simplifies message sequencing logic.
◦ The transfer Total Length has been moved into an extension item (further discussion in 

later slides).

•Reduced total extension list length from 64-bit to 32-bit.
◦ Strong guidance provided in spec to limit the size of extension items.
◦ This still allows “large” extensions (for some relative amount of largeness).

•Clarified default and minimum session timeout behaviors.
◦ Restored recommended default from TCPCLv3.

•Added a “reply” marking to SESS_TERM message to avoid trivial feedback 
loop.
◦ Now a termination initiation is distinguishable from its acknowledgement.

•Removed encoding variability in SESS_TERM reason code.
◦ An “unknown” code is used where previously there was no encoded value.

https://datatracker.ietf.org/doc/draft-ietf-dtn-tcpclv4/11/
https://datatracker.ietf.org/doc/draft-ietf-dtn-tcpclv4/11/


Minimal TCPCLv4 Implementation
• In the case where a user wants to achieve least-overhead on a 

reliable private network:
◦ No TLS use, no EID exchange, no extensions
◦ Always single-segment transfers

• Sequence:
◦ Contact header (each direction): 6 octets
◦ SESS_INIT (each direction): 25 octets
◦ XFER_SEGMENT out: 22 octets + bundle size
◦ XFER_ACK in: 18 octets
◦ SESS_TERM (each direction): 2 octets

•Overhead for session: 33 octets

•Overhead for each transfer: 40 octets



Transfer Length Extension
•The total length of a segmented transfer is now 

included in an extension item.

•Moving this data from (removed) XFER_INIT 
message to extension item saved 2 octets.
◦ XFER_INIT+XFER_SEGMENT overhead was 37 octets, now 

35 octets when the Transfer Length extension is used.



Demo CL Agent Changes
•The python example agent has been updated to 

follow new -11 message sequencing.

•New behaviors:
◦ Agents are not fully bidirectional and D-Bus controlled to 

allow multiple sessions both incoming and outgoing.
◦ Performs graceful SESS_TERM sequencing on 
KeyboardInterrupt (Ctrl+C) or D-Bus command.

◦ Implemented segment-scaling algorithm to target a desired 
time-to-acknowledge as a proof of concept.

•Also implemented random message generator to 
exercise demo agent and wireshark plugin.



New Wireshark Dissectors
• For TCPCLv4:

◦ Decodes Contact Header and all defined Message types.
◦ Handles TLS in sessions.
◦ Decodes session and transfer extension items.
◦ Performs several sequence checks with warnings.
◦ Performs SEGMENT--ACK cross-linking and timing.
◦ Reassembles segments of a transfer into a single data block.
◦ Validates CBOR decoding of the bundle content.

• For BPv7:
◦ Verifies proper bundle header/footer.
◦ Decodes primary and canonical blocks.
◦ Decodes type-specific data defined in the core spec.
◦ Ran into issues with CRC use, may need to clarify in BP spec.



Wireshark Screenshot



Open Issues from 
Feedback
•Concern about allowed extension item encodings.

◦ Currently the Extension Item data Length field is 32-bit.
◦ This is oversized from minimum expected use.
◦ This also avoids any possible issue with large extension 

items.
◦ Is it worth shaving octets to possibly run into size-

overflow issues?
◦ An Extension Item Length of 16-bits could be used with more complex 

multiple-item sequencing to implement larger data payloads.

◦ Are we concerned with two octets in an optional 
mechanism?



Way Forward for TCPCLv4
• Further set of editorial changes to fix some typos and 

to include type/reason codes in the spec body tables 
(not just in the IANA tables).

•Working implementation is available for interoperability 
testing
◦ Implemented in scapy/python for ease of understanding.
◦ Handles concurrent sessions and asynchronous socket events.
◦ Does not implement BP agent behavior, only CL behavior.

•Working Wireshark protocols for troubleshooting 
implementations and analyzing traffic.
◦ These supersede the “Bundle” protocols in stock Wireshark 2.6


	Slide 1
	Motivations for Updates to TCPCL
	Goals for TCPCLv4
	Last Draft Edits
	Minimal TCPCLv4 Implementation
	Transfer Length Extension
	Demo CL Agent Changes
	New Wireshark Dissectors
	Wireshark Screenshot
	Open Issues from Feedback
	Way Forward for TCPCLv4

