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Motivations for Updates to TCPCL
1. During implementation of TCPCLv3, Scott Burleigh found 

an ambiguity in bundle acknowledgment and refusal.

2. For use in a terrestrial WAN, author has a need for TLS-
based authentication and integrity. TCPCLv3 mentions TLS 
but does not specify its use. IETF strongly in favor of TLS 
for new general-use protocols.

3. Reduced sequencing variability from TCPCLv3

4. Adding extension capability for TCPCL sessions and 
transfers.



Goals for TCPCLv4
•Do not change scope or workflow of TCPCL.

◦ As much as possible, keep existing requirements and 
behaviors. The baseline spec was a copy-paste of 
TCPCLv3.

◦ Still using single-phase contact negotiation, re-using 
existing headers and message type codes.

◦ Allow existing implementations to be adapted for 
TCPCLv4.



Last Draft Edits
•Changes are in draft-ietf-dtn-tcpclv4-11.

•Removed separate XFER_INIT message and moved transfer extension items 
into first XFER_SEGMENT message (when START bit is set).
◦ This avoids overhead of extra message and simplifies message sequencing logic.
◦ The transfer Total Length has been moved into an extension item (further discussion in 

later slides).

•Reduced total extension list length from 64-bit to 32-bit.
◦ Strong guidance provided in spec to limit the size of extension items.
◦ This still allows “large” extensions (for some relative amount of largeness).

•Clarified default and minimum session timeout behaviors.
◦ Restored recommended default from TCPCLv3.

•Added a “reply” marking to SESS_TERM message to avoid trivial feedback 
loop.
◦ Now a termination initiation is distinguishable from its acknowledgement.

•Removed encoding variability in SESS_TERM reason code.
◦ An “unknown” code is used where previously there was no encoded value.

https://datatracker.ietf.org/doc/draft-ietf-dtn-tcpclv4/11/
https://datatracker.ietf.org/doc/draft-ietf-dtn-tcpclv4/11/


Minimal TCPCLv4 Implementation
• In the case where a user wants to achieve least-overhead on a 

reliable private network:
◦ No TLS use, no EID exchange, no extensions
◦ Always single-segment transfers

• Sequence:
◦ Contact header (each direction): 6 octets
◦ SESS_INIT (each direction): 25 octets
◦ XFER_SEGMENT out: 22 octets + bundle size
◦ XFER_ACK in: 18 octets
◦ SESS_TERM (each direction): 2 octets

•Overhead for session: 33 octets

•Overhead for each transfer: 40 octets



Transfer Length Extension
•The total length of a segmented transfer is now 

included in an extension item.

•Moving this data from (removed) XFER_INIT 
message to extension item saved 2 octets.
◦ XFER_INIT+XFER_SEGMENT overhead was 37 octets, now 

35 octets when the Transfer Length extension is used.



Demo CL Agent Changes
•The python example agent has been updated to 

follow new -11 message sequencing.

•New behaviors:
◦ Agents are not fully bidirectional and D-Bus controlled to 

allow multiple sessions both incoming and outgoing.
◦ Performs graceful SESS_TERM sequencing on 
KeyboardInterrupt (Ctrl+C) or D-Bus command.

◦ Implemented segment-scaling algorithm to target a desired 
time-to-acknowledge as a proof of concept.

•Also implemented random message generator to 
exercise demo agent and wireshark plugin.



New Wireshark Dissectors
• For TCPCLv4:

◦ Decodes Contact Header and all defined Message types.
◦ Handles TLS in sessions.
◦ Decodes session and transfer extension items.
◦ Performs several sequence checks with warnings.
◦ Performs SEGMENT--ACK cross-linking and timing.
◦ Reassembles segments of a transfer into a single data block.
◦ Validates CBOR decoding of the bundle content.

• For BPv7:
◦ Verifies proper bundle header/footer.
◦ Decodes primary and canonical blocks.
◦ Decodes type-specific data defined in the core spec.
◦ Ran into issues with CRC use, may need to clarify in BP spec.



Wireshark Screenshot



Open Issues from 
Feedback
•Concern about allowed extension item encodings.

◦ Currently the Extension Item data Length field is 32-bit.
◦ This is oversized from minimum expected use.
◦ This also avoids any possible issue with large extension 

items.
◦ Is it worth shaving octets to possibly run into size-

overflow issues?
◦ An Extension Item Length of 16-bits could be used with more complex 

multiple-item sequencing to implement larger data payloads.

◦ Are we concerned with two octets in an optional 
mechanism?



Way Forward for TCPCLv4
• Further set of editorial changes to fix some typos and 

to include type/reason codes in the spec body tables 
(not just in the IANA tables).

•Working implementation is available for interoperability 
testing
◦ Implemented in scapy/python for ease of understanding.
◦ Handles concurrent sessions and asynchronous socket events.
◦ Does not implement BP agent behavior, only CL behavior.

•Working Wireshark protocols for troubleshooting 
implementations and analyzing traffic.
◦ These supersede the “Bundle” protocols in stock Wireshark 2.6
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