Towards Hyperscale
HPC & RDMA

Paul Congdon
(Tallac/Huawei)
paul.congdon@tallac.com
IETF-104 HotRFC
Current HPC/RDMA networks

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang

• Traditionally, HPC runs over custom lossless technologies
 • Infiniband
 • Link Layer Credit-based Flow Control

• More recently designed to run over IP infrastructure
 • iWARP (IETF RFC 5040 – RFC 5044, RFC 6580, RFC 6581, RFC 7306)
 • RoCEv2 (https://www.infinibandta.org/)

• The results produced by these networks are mainstream through the integration of artificial intelligence, machine learning, data analytics and data science workloads
Separate Network, Not Ethernet/IP
Not Route-able, L2 Data Center, Complex L2 Congestion Control (QCN)
Incomplete Congestion Control, reliance on L2 PFC
Unspecified TCP tweaks, TCP HW NIC, Slow Start
What does it mean to be Hyperscale

• The term “hyperscale” refers to a computer architecture’s ability to scale in order to respond to increasing demand.

• Goals
 • Common cloud scale infrastructure
 • Dynamic and automated provisioning
 • Diverse workload mix
 • Low latency, high throughput

• Suggestions have been made to scale RDMA/HPC
 • RDMA over commodity Ethernet at scale, SIGCOMM 2016
 • iWARP Redefined: Scalable Connectionless Communication over High-Speed Ethernet, 2010 International Conference on High Performance Computing
 • Tuning ECN for Data Center Networks, CoNEXT '12
 • Revisiting Network Support for RDMA, SIGCOMM 2018
 • https://datatracker.ietf.org/doc/draft-chen-iccrg-rocev3-cm-requirements/
 • RoCEv3 = Improved retransmission strategy
 Improved congestion control mechanism (RTT, credit, ECN)
 Finer grain load balancing with looser re-ordering requirements
What if scenarios for Hyperscale HPC

• What if networks didn’t have to be lossless, but just very low loss?
• What if iWARP was run over Enhanced UDP instead of TCP?
• What if congestion management was fully defined for RDMA?

Can we hyperscale HPC?

• Side Meeting:
 Monday 10AM
 Room: Tyrolka