Using HTTP/2 as a Transport for Arbitrary Bytestreams draft-kinnear-httpbis-http2-transport

Eric Kinnear (ekinnear@apple.com) Tommy Pauly (tpauly@apple.com)

> HTTPBIS IETF 104, March 2019, Prague

Transport Considerations

- Sharing underlying transport brings benefits, but also has caveats
- tsvwg has great insights about challenges in this area
 - HoL blocking, UDP/datagram transport, tunneling
 - ECN, nested congestion control questions
- Much of the content and mechanism belongs in httpbis
- Discuss in tsvwg in tandem

Motivation

Generic transport for secure, arbitrary bytestreams

Multiplexed streams

Low setup cost for new streams

Single congestion and recovery context

Peer-to-peer communication

Example: Remote IPC

Share underlying transport with existing infrastructure

E. Kinnear, T. Pauly | Apple

HTTPBIS | IETF 104 З

Why HTTP/2?

- HTTP/2 provides framing layer with many desired transport features
 - Configuration exchange
 - Multiplexed streams
 - Shared congestion control and loss recovery state
 - Flow control
 - Stream relationships and priorities

Traverses the internet

Some of these properties from TLS/TCP

E. Kinnear, T. Pauly | Apple

Potential Solution

- CONNECT allows tunneling to another endpoint
- Extended CONNECT allows connecting to server itself
- Can also enable proxying of UDP, with additional framing
- HTTP headers enable additional negotiation
- Coexists with standard HTTP request/response streams

New :protocol Values

- Extended CONNECT defines : protocol value for use with WebSocket
- Make generic by defining common base not specific to WebSocket
- Define additional :protocol values
 - "bytestream"
 - Direct stream mapping for arbitrary bytestreams to remote server
 - "datagram"
 - Framing for UDP transport, to server and possibly with traditional CONNECT to another endpoint

Motivation

Generic transport for secure, arbitrary bytestreams

Multiplexed streams

Low setup cost for new streams

Single congestion and recovery context

Peer-to-peer communication

Example: Remote IPC

Share underlying transport with existing infrastructure

draft-kinnear-httpbis-http2-transport

E. Kinnear, T. Pauly | Apple

HTTPBIS | IETF 104 7

Motivation

- Generic transport for secure, arbitrary bytestreams
- Multiplexed streams
 - Low setup cost for new streams
 - Single congestion and recovery context
- Peer-to-peer communication Example: Remote IPC, QUIC
- Share underlying transport with existing infrastructure

E. Kinnear, T. Pauly | Apple

HTTPBIS | IETF 104 8

Why QUIC Transport?

- HTTP/3 over QUIC Transport falls back to HTTP/2 over TLS/TCP
- What transport abstraction does QUIC Transport alone use over TCP?
- HTTP/2 provides framing layer with many desired transport features Configuration exchange Multiplexed streams Flow Control Stream relationships and priorities
- TLS/TCP provides shared congestion control and loss recovery state

Solution

- Extended CONNECT defines : protocol value for use with WebSocket
- Define additional : protocol values
 - "bytestream"
 - "datagram"
 - CONNECT to another endpoint

Define new SETTING to allow bidirectional use of (Extended) CONNECT

Direct stream mapping for arbitrary bytestreams to remote server

Framing for UDP transport, to server and possibly with traditional

E. Kinnear, T. Pauly | Apple

HTTPBIS | IETF 104 10

Summary

Add new : protocol values to Extended CONNECT handshake Built in security with low setup cost for new streams Enables the benefits above for peer-to-peer communications

- Sharing multiple connections to server over single underlying transport
- Ability to proxy UDP traffic more effectively to (and through) the server
- Add new SETTING to allow using Extended CONNECT in both directions

 - Provides fallback mechanism for QUIC Transport over HTTP/2 framing

Questions?

draft-kinnear-httpbis-http2-transport

E. Kinnear, T. Pauly | Apple