
HTTPS and
the Evil

Spec
Lawyer of

QUIC

Them’s the rules….

RFC 3986, 3.2.3:
A scheme may define a default port. For example, the "http" scheme

defines a default port of "80", corresponding to its reserved TCP

port number. The type of port designated by the port number (e.g.,

TCP, UDP, SCTP) is defined by the URI scheme. URI producers and

normalizers should omit the port component and its ":" delimiter if

port is empty or if its value would be the same as that of the

scheme's default.

2

A long time ago, in an IETF far, far away….

RFC 2818, 2.3:
When HTTP/TLS is being run over a TCP/IP connection, the default port

is 443. This does not preclude HTTP/TLS from being run over another

transport. TLS only presumes a reliable connection-oriented data

stream.

3

What we currently say…. (1/2)

RFC 7230, 2.7.1:
Although HTTP is independent of the transport protocol, the "http"

scheme is specific to TCP-based services because the name delegation

process depends on TCP for establishing authority. An HTTP service

based on some other underlying connection protocol would presumably

be identified using a different URI scheme, just as the "https"

scheme (below) is used for resources that require an end-to-end

secured connection. Other protocols might also be used to provide

access to "http" identified resources -- it is only the authoritative

interface that is specific to TCP.

4

What we currently say…. (2/2)

RFC 7230, 2.7.2:
The "https" URI scheme is hereby defined for the purpose of minting

identifiers according to their association with the hierarchical

namespace governed by a potential HTTP origin server listening to a

given TCP port for TLS-secured connections ([RFC5246]).

All of the requirements listed above for the "http" scheme are also

requirements for the "https" scheme, except that TCP port 443 is the

default if the port subcomponent is empty or not given, and the user

agent MUST ensure that its connection to the origin server is secured

through the use of strong encryption, end-to-end, prior to sending

the first HTTP request.

5

6

Option 1:
Long Live TCP!

Client

Server

TCP
443

UDP
443

• RFC 7230: “The authoritative endpoint is specific to TCP”
• TCP is the bootstrap

• Every HTTP(S) server will always have a TCP endpoint for first
contact

• Every HTTP(S) client will need a TCP stack for discovery

• Alt-Svc enables delegation to an alternative endpoint
• Also provides vehicle for QUIC version hint

• Might define other ways to get the Alt-Svc record (e.g. DNS)
to avoid the TCP connection

7

Option 2:
Mutilate

Decorate the
URI!

• RFC 7230: “[another] connection protocol
would … be identified using a different URI
scheme”

• Supports authoritative HTTP/3 endpoints
• …and QUIC-only endpoints or clients

• Bizarre in various ways:
• (1) violates RFC 3986, breaks URI parsers
• (2) is a “disaster of nuclear proportions”
• (3) redefines deprecated functionality

https://www.example.com:q443/

httpq://www.example.com/

https://quic@www.example.com/

8

Option 3:
Dual-Stack –
it worked for

IPv6!

• RFC 3986 doesn’t actually say there can be only one transport
protocol

• We’re in the process of revising RFC 723X
• …so we can change the definitions!

• New rule: “https” means TCP or UDP port 443
• …and maybe “http” means TCP or UDP port 80?

• No QUIC version hint

Client

Server

TCP
443

UDP
443

9

Option 3:
Dual-Stack –
it worked for

IPv6!

• RFC 3986 doesn’t actually say there can be only one transport
protocol

• We’re in the process of revising RFC 723X
• …so we can change the definitions!

• New rule: “https” means TCP or UDP port 443
• …and maybe “http” means TCP or UDP port 80?

• No QUIC version hint
• Even Happier Eyeballs!

Client

Server

TCP
443

UDP
443

10

Other Considerations

Will QUIC-only
servers exist?

• How do we address
them?

Will QUIC-only
clients exist?

• How do they handle
an “http(s)” URL?

Managing TCP vs.
QUIC load

Does this impact
security for

existing servers?

