

UiO Faculty of Mathematics and Natural Sciences
University of Oslo

Estimating an Additive Path Cost with Explicit Congestion Notification*

Peyman Teymoori, David Hayes, Michael Welzl, Stein Gjessing {peymant | michawe | steing}@ifi.uio.no, davidh@simula.no

IETF 104 Prague – ICCRG

^{*} Teymoori, Peyman; Hayes, David Andrew; Welzl, Michael; Gjessing, Stein.

<u>Estimating an Additive Path Cost with Explicit Congestion Notification</u>. Universitetet i Oslo 2019 (ISBN 978-82-7368-452-3).

Overview

- Explicit Congestion Notification (ECN)
- Network Utility Maximization (NUM)
- Solving NUM with ECN
- Model Validation & Simulation Results
- Applications
- Conclusion

Explicit Congestion Notification (ECN)

- Conveying at least one queue along the path is congested
- Inherently more reliable than delay-based signals
- Can be used as a multi-bit congestion signal
- Example: Datacenter TCP (DCTCP)
 - Instantaneous queue
 - Marking all the packets above the threshold
 - Interpret the number of ECN marks over a period of time (e.g. RTT)

ECN Issues

- As one-bit information: routers cannot re-mark CE
- Not a problem with "normal" RFC 3168 ECN
 - marking probability generally kept low
 - uses only 1 signal/RTT
- DCTCP's use of ECN recognizes: low marking probability
 - diminishes the usefulness of ECN
 - only useful when dealing with packet drops
- It is not additive; it's multiplicative
 - problems with the NUM theory!

Network Utility Maximization (NUM)

- Solves the rate allocation problem given the network's constraints
- Senders express their happiness wrt send rates by utility functions (usually concave)
- NUM maximizes the sum of utility functions subject to network constraints $\sum_{u=1}^{N} (x_u)$

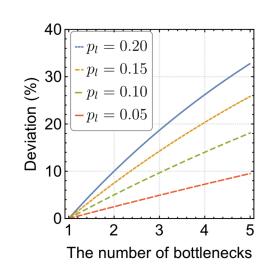
$$\max_{x} \sum_{r \in R} U_{r}(x_{r})$$

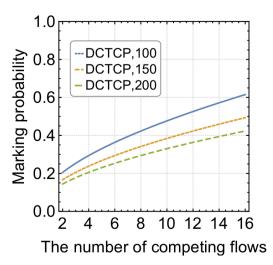
$$s.t. \qquad y_{l} \leq c_{l},$$

Using ECN as Cost in NUM

Comparing:

$$p_r = 1 - \prod_{l \in L_r} (1 - p_l)$$
 \mathfrak{S}^{30} $\mathfrak{S}^{$





If
$$p_l \ll 1$$
, then $1 - \prod (1 - p_l) \approx \sum p_l$

Our Contributions

- Turning ECN into an additive signal and using it for NUM
- Marking can be attained by configuring RED (Random Early Detection) at routers
 - deployed with commodity switch hardware
- Benefit: faster convergence
- Could enable earlier feedback by marking below the capacity
 - virtual queues/phantom queues/proxy queues

KKT Theorem (with our extension)

 Optimality Conditions in the KKT theorem:

$$\max_{x} \qquad U(x)$$

$$s.t. \qquad g_{i}(x) \leq 0, \qquad i = 1, \dots, M_{1}$$

$$h_{j}(x) = 0, \qquad j = 1, \dots, M_{2}.$$

- Necessary conditions:
 - if x* is a local optimum, then
 - stationarity:

$$abla U(x^*) = \sum_{i=1}^{M_1} \mu_i
abla g_i(x^*) + \sum_{j=1}^{M_2} \lambda_j
abla h_j(x^*),$$

- our change to the theory:
 - stationarity:

$$\nabla U(x^*) = \sum_{i=1}^{M_1} f(p_i) \nabla g_i(x^*) + \sum_{j=1}^{M_2} k(v_j) \nabla h_j(x^*)$$

Optimization Using ECN

• The function multiplier: $f(p_l) = -\log_\phi(1-p_l)$ $p_l \in [0,1]$

Lagrangian function:
$$\mathcal{L}(x,p) = \sum_{r \in R} \Big(U_r(x_r) - x_r \big(-\log_\phi(1-p_r) \big) \Big) +$$

$$\sum_{l \in L} \left(c_l \left(-\log_{\phi} \left(1 - p_l \right) \right) \right).$$

- Then, devising three types of algorithms:
 - Primal
 - Dual (RED)
 - Primal-Dual

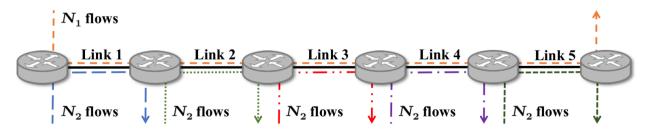
Dual (RED)

The algorithm at routers:

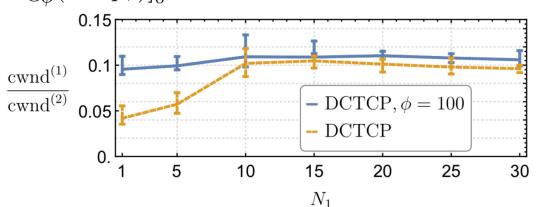
 $p_l[n] = \left[\frac{b_l[n]}{\text{max}_{\text{th}}}\right]_0^1$

- Can be configured by
 - $\min_{th} = 1$
 - $\max_{th} >= \alpha L S$ (stability condition)
 - example: for a scenario in which BDP=1.7 MByte, max_{th} >= 1.3 Mbyte, but we set max_{th} = 220 Kbyte (without observing instability). Average queue size was around 75 Kbyte.
 - $\max_{D} = 1$
 - $w_a = 1$ (instantaneous queue)

Validation with DCTCP



Instead of p_r (last RTT's marking prob.), senders use $[-\log_{\phi}(1-p_r)]_0^1$



Other Optimization Algorithms

• Primal:
$$\dot{x}_r = \varrho_r(x_r) \Big(U_r'(x_r) + \log_\phi (1 - p_r) \Big)$$

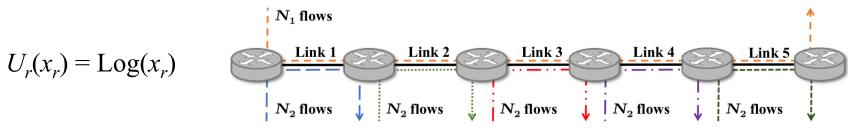
• Dual1:
$$\dot{p}_l = \sigma_l(p_l) \frac{1}{1-p_l} \Big[y_l - c_l \Big]_{p_l}^+$$

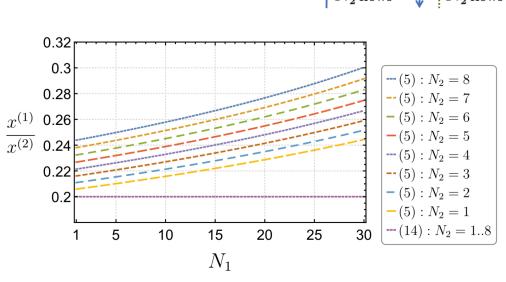
$$x_r = U_r^{'-1} (-\log_{\phi} (1 - p_r))$$

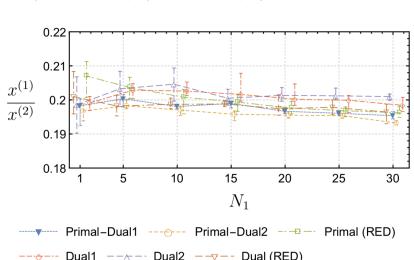
• Dual2:
$$\dot{p}_l = \sigma_l(p_l) \Big[y_l - c_l \Big]_{p_l}^+$$

UiO * Faculty of Mathematics and Natural Sciences University of Oslo

Validation with a Logarithmic Utility







Applications

 Obtaining utility function when the marking probability is high, e.g. DCTCP and LGC

- Deflating/inflating marking probability
 - playing with the base of log

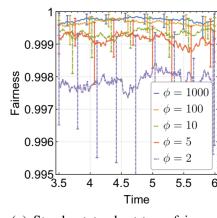
$$f(p_l) = -\log_{\phi}(1 - p_l)$$

- And the potential of dealing with virtual queues
 - producing an early signal before the physical queue grows

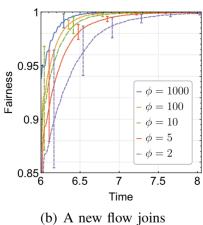
UiO Faculty of Mathematics and Natural Sciences University of Oslo

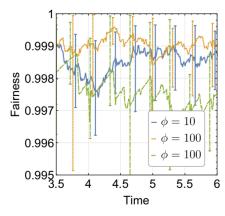
Simulation Results

Effects of marking probability on convergence:

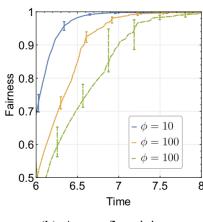


(a) Steady-state short-term fairness





(a) Steady-state short-term fairness



(b) A new flow joins

$$C_l = 1$$
 Gbps

$$C_1 = 40 \text{ Mbps}$$

Marking probabilities: 0.031, 0.066, 0.087, 0.149, 0.211, ···, 0.84, 0.97, 0.99

Conclusion

- Improving ECN widening its range!
 - faster convergence
 - smoother behavior
 - possibility of marking before queue grows
- Next steps:
 - experiments
 - deployment

UiO * Faculty of Mathematics and Natural Sciences
University of Oslo

Thank you!