
 1

Implementing the 'Prague
Requirements' in TCP for L4S

 Bob Briscoe (Independent & CableLabs)

Koen De Schepper (Nokia Bell-Labs)

Olivier Tilmans (Nokia Bell-Labs)

Mirja Kuehlewind (ETHZ)

Joakim Misund (Uni Oslo & Simula Research Lab)

Olga Albisser née Bondarenko (Simula Research Lab)

Asad Sajjad Ahmed (Simula Research Lab & Uni Oslo)

 2

The trick: scalable congestion control

AQM
target

full utilization;
insensitive to
target

consistently
low queuing
delay

li
nk

ut
il

iz
at

io
n

bu
ff

er
oc

cu
pa

nc
y

TCP
saw-teeth
seeking
capacity

time

less buffer;
still enough
for bursts

 Today (typical)  Today (at best)  Unacceptable  L4S

Bottleneck Bloated drop-tail buffer AQM Shallower AQM Immediate AQM

Sender CC Classic Classic Classic Scalable (tiny saw-teeth)

shallower
target

even less
buffer

no delay
but poor
utilization

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.3

Implementation status
pasted from https://riteproject.eu/dctth/#code

particular thanks to Olivier Tilmans
for pulling together TCP Prague and the Hackathon team

+DOCSIS 3.1
(next slide)

https://riteproject.eu/dctth/#code

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.4

Low Latency DOCSIS 3.1
● Low Latency measures mandatory from Jan'19

– upstream (Cable Modem) & downstream (CMTS)
● DOCSIS 3.1 MAC and Upper Layer Protocols i/f (MULPI) Spec (i17+)
● Cable Modem Operations Support System Interface Spec (i14+)
● CCAP Operations Support System Interface Specification (i14+)

● Cuts 2 main sources of delay
● MAC: Request-grant loop
● Queuing: Mandatory L4S support

● White paper: Low Latency DOCSIS: Technology Overview
● Also translated into ASCII: draft-white-tsvwg-lld (Informational)

● Certification test plans nearing completion
● Implementation in progress

https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CCAP-OSSIv3.1
https://cablela.bs/low-latency-docsis-technology-overview-february-2019

 5

TCP Prague
● new Linux congestion control module

● with mandatory use of certain improvements to base TCP

● based off DCTCP scalable congestion controller
● some improvements available for DCTCP as well

● usable for testing, but still a work in progress
● Available from:

https://github.com/L4STeam/tcp-prague (tcp_prague branch)
● patch submitted to Linux netdev list this week
● To load & enable

sudo modprobe tcp_prague
sudo sysctl -w net.ipv4.tcp_congestion_control=prague

[TCP-Prague-netdev]

https://github.com/L4STeam/tcp-prague

 6

The 'Prague L4S requirements'
● for scalable congestion ctrls over Internet

● Assuming only partial deployment of either FQ or
DualQ Coupled AQM isolation for L4S

● Jul 2015 Prague IETF, ad hoc meeting of ~30
DCTCP folks

● categorized as safety (mandatory) or
performance (optional)

● not just for TCP
● behaviour for any wire protocol (TCP, QUIC, RTP,

etc)

● evolved into IETF conditions for setting
ECT(1) in IP

[ietf-l4s-id]

Requirements

L4S-ECN Packet Identification: ECT(1)

Accurate ECN TCP feedback

Reno-friendly on loss

Reno-friendly if Classic ECN bottleneck

Reduce RTT dependence

Scale down to fractional window

Detecting loss in units of time

Optimizations

ECN-capable TCP control packets

Faster flow start

Faster than additive increase

 7

TCP Prague: status against Prague L4S requirements

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mod opt default

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent? inherent

Reno-friendly if classic ECN bottleneck TBA if nec.

Reduce RTT dependence simulated

Scale down to fractional window in progress

Detecting loss in units of time default RACK default RACK mandatory

Optimizations

ECN-capable TCP control packets sysctl option off default on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

 8

Set ECT(1) in IP header

● the L4S packet identifier
● IPv4 & IPv6

● Added module option to TCP Prague, and DCTCP could duplicate it
● TCP Prague: might replace DCTCP in a private DC
sudo modprobe tcp_prague prague_ect=X

● DCTCP: private DC might need to control which codepoint1

sudo modprobe tcp_dctcp dctcp_ect=X

Codepoint IP-ECN bits Meaning

Not-ECT 00 Not ECN-Capable Transport

ECT(0) 10 Classic ECN-Capable Transport

ECT(1) 01 L4S ECN-Capable Transport

CE 11 Congestion Experienced

X TCP Prague DCTCP

0 use ECT(0) default

1 use ECT(1) default

1 only once the patch fixing dctcp's response to loss is accepted

and response to loss is not disabled

 9

Accurate ECN TCP feedback
● TCP Prague, like DCTCP, needs extent of congestion, not just existence

● Classic ECN [RFC3168] limits TCP feedback to one ECN-event per RTT
● DCTCP redefines TCP flags, but no negotiation and unreliable

● AccECN: negotiated reliable f/b of extent of congestion
● updates the base TCP stack – independent of TCP Prague
● but TCP Prague depends on both ends having negotiated AccECN

see Mirja's netdev 2.2 talk: AccECNsee Mirja's netdev 2.2 talk: AccECN
[RFC7560], [ietf-AccECN], [AccECN-netdev]

ECT(1)

AccECN
TCP Prague

AccECN
TCP Prague

AccECN

Classic ECN
TCP Prague

Other CC

● For testing, if AccECN negotiation fails, can force
a classic ECN peer to echo each ECN mark once

● not for production – unreliable delivery of congestion feedback
sudo sysctl -w net.ipv4.tcp_force_peer_unreliable_ece=1

AccECN-test
TCP Prague ECT(1)

Classic ECN
TCP Prague

 10

0 1/4 1/2 3/4 1
0

 1/8

 1/4

 3/8

 1/2

 5/8

(2-a)/2 * 1/2 [naïve]

(2-a)/2 * 1/(2-a) [ideal]

(2-a)/2 * (2+a)/4 [approx]

(2-a)/2 * (1+a)/2 [approx2]

EWMA of ECN marking fraction, a

m
u

lti
p

lic
a

tiv
e

 lo
ss

 f
a

ct
o

r

0 1/4 1/2 3/4 1
0

 1/8

 1/4

 3/8

 1/2

 5/8

(2-a)/2 * 1/2 [naïve]

(2-a)/2 * 1/(2-a) [ideal]

(2-a)/2 * (2+a)/4 [approx]

(2-a)/2 * (1+a)/2 [approx2]

EWMA of ECN marking fraction, a

m
u

lti
p

lic
a

tiv
e

lo
ss

 fa
ct

o
r

Fall back to Reno-Friendly on loss
● Linux DCTCP bug for last 4 years had no ssthresh reduction on fast re-xmt

● fixed in TCP Prague, and patch submitted for DCTCP

● Multiplicative decreases of ECN & loss in 'same' RTT?
● EWMA of ECN, alpha continues independent of losses
● each response to a loss episode contrived

to give a compound decrease of ~1/2
(ECN reduction) * (loss reduction) ≈ 1/2

(2-alpha)/2 *(2+alpha)/4 ≈ 1/2

[RFC8257]

alpha1

ECN rounds

loss rounds

alpha2 alpha3 alpha4 alpha5 alpha6

 11

Fall back to Reno-Friendly on Classic ECN

● All academic ECN studies over the years (incl. 2017,
2019) have found virtually no ECN marking

● Would expect to see CE marking as FQ-CoDel deploys

[RFC8257]

AQM?

scheduler?

scaled
decrease ½

ECN
mark

L4S

FQ FIFO

Classic

● Are any FIFO Classic ECN routers enabled?
● Mar 2017: Apple found at least 1 CE /12hr
● FQ or FIFO?

– Digging into Apple data
– Devised FQ v FIFO test

 12

Reduce RTT Dependence
● Why worry?

1) all TCP's are RTT-dependent anyway

2) large & small RTT flow in one bottleneck is doubly rare
– multiple long-running flows in one bottleneck are rare
– large RTT flows are rare

● Because
● RTT dependence only

appears as queues shrink
● today's rare traffic mix could

be tomorrow's killer app

● Solutions simulated
● not yet implemented in Linux

143ms
15ms

15+1
143+1

=
1
9

15+17
143+17

=
1
5

15+177
143+177

=
3
5

bloated queue: 177ms

L4S: 1ms

classic AQM: 17ms

[CC-scaling-tensions]

 13

BDP [1500B pkts]

10,000-10,000,000

10-10,000

0.01-10

1E-05 - 0.01

Scale down to fractional window

Problem
● TCP's min window:

● 2 segments (due to delayed ACKs)

● with deep queue: no issue
● with shallow AQM target:

● TCP becomes unresponsive
● inflates queue to keep 2 pkts in flight / flow
● ignores AQM's attempts to hold down queue

[low-RTT-scaling], [CC-scaling-tensions]

 14

Scale down to fractional window

Solution
● fractional window implemented in base TCP

● uses pacing (with ACK clock) for packet conservation
● keeps AI below MD by scaling to log of ssthresh

● still debugging DCTCP-specific addition:
● to adjust clocking of DCTCP EWMA

● once mature, will be added to TCP Prague
● initially as default-off option

[low-RTT-scaling], [CC-scaling-tensions]

250.00 250.02 250.04 250.06 250.08 250.10
Time (s)

2000

4000

6000

8000

10000

12000

C
o
n
g
e
st

io
n
 W

in
d
o
w

 (
B

y
te

s)

C
o
n
g
e
st

io
n
 W

in
d
o
w

 (
sn

d
r

m
a
x
 s

e
g
m

e
n
ts

)

2

4

6

8

● testbed config of above example
● 20 TCP Reno flows, SMSS 1448B
● bottleneck link rate: 200Mb/s; base RTT 300µs
● AQM: RED 0-10% over 1-3ms

 15

Detecting loss in units of time

● like RACK (Recent ACKnowledgements)
● mandatory for L4S

● L4S queues will know all sources tolerate reordering < x μs
● softens a hard constraint on hi-speed link design

● TCP Prague implementation currently uses RACK as-is
● including RACK's 3 DupACK bootstrap at start of flow – in units of packets :(
● alternative approaches to modify RACK bootstrap for TCP Prague

● bootstrap with SRTT/8 (say)
using SRTT from 3WHS, dst cache and/or TFO cookie

● ensure initial window is paced over the RTT,
so duration of 3 DupACK is invariant as flow-rate scales

[RACK-netdev], [ietf-RACK]

 16

Set IP-ECN to ECT on TCP control packets (ECN++)
● Loss protection for performance-critical pkts

● Already default-on in DCTCP
● otherwise high background ECN-marking

leads to high loss of not-ECT control packets

● Some fall-backs in IETF ECN++ spec still TBA
● ECN++ default-off while fall-back code matures
● to enable:
sudo sysctl -w net.ipv4.tcp_ecn_plus_plus=1

● ECN++ patches the base TCP stack
● TCP Prague depends on negotiating AccECN
● So ECT(1) is allowed on every packet

TCP
packet type

RFC3168
sender

ECN++ sender

AccECN f/b
negotiated1

RFC3168 f/b
negotiated

SYN not-ECT ECT not-ECT

SYN-ACK not-ECT ECT ECT

Pure ACK not-ECT ECT not-ECT

Window probe not-ECT ECT ECT

FIN not-ECT ECT ECT

RST not-ECT ECT ECT

Re-XMT not-ECT ECT ECT

Data ECT ECT ECT

[ietf-ECN++]

1 AccECN feedback 'requested' in the case of a SYN

'ECT' means whichever ECN-Capable Transport codepoint
is appropriate, whether ECT(0) or ECT(1)

 17

Over-strict ECN negotiation 'bug'
● If a SYN requests ECN at the TCP layer and is already ECN-capable at the IP layer

● Linux TCP listeners currently disable ECN for the connection

● Rationale: RFC3168 says “A host MUST NOT set ECT on SYN...”
● so ECT on a SYN could be a symptom of network mangling
● 'bug': it could also be a symptom of a new standard (it is now: ECN++)

● ECN++ client deployment cannot get started – it disables ECN :(

● Recent tiny patch for back-porting to all TCP listeners
● identifies an ECN set-up SYN that's ECN-capable in IP by:

 flag bits 4-9 == 0b000011

not just

flag bits 8-9 == 0b11
● This can distinguish an RFC3168 ECN setup SYN

from something newer that allows ECT on a SYN,
such as an AccECN setup SYN, which uses

 flag bits 4-9 == 0b111

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Port no’s, Seq no’s...

 Data
Offset

Res-
erved

A
E

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

TCP Options...

[ietf-ECN++]

 18

Faster flow start
without overshoot

● DCTCP is slow to get started
● alone: hard not to exceed the shallow ECN threshold
● pushing in: frequent ECN marks hit new flow early
● early exit from slow start into additive increase

● Why not respond to extent not existence?
● TCP Prague sender doesn't know if marks are L4S

● Plan to use paced chirping, once stable
● only a few packets of overshoot
● typically much faster increase than slow-start
● primarily delay-based, so universal

● Until paced-chirping is more mature
● download separately: github.com/JoakimMisund/PacedChirping

[paced-chirping-netdev], [paced-chirping]

Before:
DCTCP slow-start

After:
DCTCP+PacedChirps

Q
ue

ue
 d

el
ay

 [m
s]

T
hr

ou
gh

pu
t [

M
b/

s]

https://github.com/JoakimMisund/PacedChirping

 19

Faster than additive increase
● DCTCP and TCP Prague can exploit high freq ECN

● rapidly detect when it stops...

● ...then probe for capacity
● plan to use paced chirping

● Why not use paced chirping all the time (like TCP Rapid)?
● tried that – unnecessarily raises the noise floor

window

20ms round trips

1,000250 500 750 1,250 1,500 1,750 2,000

Cubic 100 Mb/s
v =1/250

Cubic 800 Mb/s
v = 1/500

DCTCP any rate:
v = 2

DCTCP any rate
v = 2

[paced-chirping-netdev], [paced-chirping]

Faster than AI

● NS-3 simulation
● Base RTT: 100ms
● Capacity 50Mbps→ 100Mbps

RTTs to 95% Overshoot

Cubic 150 20ms

DCTCP + Pc'd Chirping 7 <1ms

 21

Prague L4S requirements: status
Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mod opt default

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent? inherent

Reno-friendly if classic ECN bottleneck TBA if nec.

Reduce RTT dependence simulated

Scale down to fractional window in progress

Detecting loss in units of time default RACK default RACK mandatory

Optimizations

ECN-capable TCP control packets sysctl option off default on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

 22

Performance
(briefly)

● Low higher percentile delay important
● for low latency real-time delivery
● have to measure delay of every packet

● median Q delay: 100-200μs
● 99%ile Q delay: 1-2ms
● ~10x lower delay than best 2nd gen. AQM

● at all percentiles

● ...when really hammering each AQM
● long-running TCPs: 1 ECN 1 non-ECN
● web-like flows @ 300/s ECN, 300/s non-ECN

– exponential arrival process
– file sizes Pareto distr. α=0.9 1KB min 1MB max

● 120Mb/s 10ms base RTT

 23

summary
● L4S

● Frequent L4S-ECN markings give leaps in performance
Low Latency

Low Loss

Scalable throughput

● a set of incremental changes to network & hosts

● TCP Prague
● a set of incremental changes to TCP or DCTCP
● with radical results
● most are desirable in themselves

Requirements base TCP DCTCP TCP Prague

Set ECT(1) module option mod opt default

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent? inherent

Reno-friendly if Classic ECN bottleneck TBA if nec.

Reduce RTT dependence simulated

Scale down to fractional window in progress

Measure reordering tolerance in time units default RACK default RACK mandatory

Optimizations

Set ECT in TCP control packets sysctl option off default on default off→on later

Faster flow start in progress

Faster than additive increase in progress

 24

more info
All via L4S Landing page: https://riteproject.eu/dctth/

Linux Netdev
● [tcp-prague-netdev] Briscoe, B., De Schepper, K., Albisser, O., Misund, J., Tilmans, O., Kühlewind, M. & Ahmed, A. S., “Implementing the 'TCP Prague' Requirements for L4S” in Proc. Netdev 0x13 (Mar 2019)
● [dualpi2-netdev] “DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM” in Proc. Netdev 0x13 (Mar 2019)
● [paced-chirping-netdev] “Paced Chirping - Rethinking TCP start-up” in Proc. Netdev 0x13 (Mar 2019)
● [AccECN-netdev] Mirja Kühlewind, “State of ECN and improving congestion feedback with AccECN in Linux” in Proc. Netdev 2.2 (Dec 2017)
● [RACK-netdev] Cheng, Y. & Cardwell, N.,”Making Linux TCP Fast” in Proc. Netdev 1.2 (Oct 2016)

IETF
● [ietf-l4s-arch] Briscoe (Ed.), B., De Schepper, K. & Bagnulo, M., "Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service: Architecture," IETF Internet Draft draft-ietf-tsvwg-l4s-arch-03 (Oct 2018) (Work in Progress)
● [RFC8311] Black, D. “Explicit Congestion Notification (ECN) Experimentation” IETF RFC8311 (Jan 2018)
● [ietf-l4s-id] De Schepper, K., Briscoe (Ed.), B. & Tsang, I.-J., "Identifying Modified Explicit Congestion Notification (ECN) Semantics for Ultra-Low Queuing Delay (L4S)," IETF Internet Draft draft-ietf-tsvwg-ecn-l4s-id-05 (Nov

2018) (Work in Progress)
● [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L. & Judd, G., "Data Center TCP (DCTCP): TCP Congestion Control for Data Centers," RFC Editor RFC8257 (October 2017)
● [ietf-dualq-aqm] De Schepper, K., Briscoe (Ed.), B., Albisser, O. & Tsang, I.-J., "DualQ Coupled AQM for Low Latency, Low Loss and Scalable Throughput," IETF Internet Draft draft-ietf-tsvwg-aqm-dualq-coupled-08 (Nov 2018)

(Work in Progress)
● [RFC7560] Kühlewind, M., Scheffenegger, R. & Briscoe, B. “Problem Statement and Requirements for Increased Accuracy in Explicit Congestion Notification (ECN) Feedback” IETF RFC7560 (2015)
● [ietf-AccECN] Briscoe, B., Scheffenegger, R. & Kühlewind, M., "More Accurate ECN Feedback in TCP," IETF Internet Draft draft-ietf-tcpm-accurate-ecn-07 (Jul 2018) (Work in Progress)
● [ietf-RACK] Cheng, Y., Cardwell, N., Dukkipati, N. & Jha, P., “RACK: a time-based fast loss detection algorithm for TCP” IETF Internet Draft draft-ietf-tcpm-rack-04 (Jul 2018) (Work in Progress)
● [ietf-ECN++] Bagnulo, M. & Briscoe, B., “ECN++: Adding Explicit Congestion Notification (ECN) to TCP Control “Packets IETF Internet Draft draft-ietf-tcpm-generalized-ecn-03 (Oct 2018) (Work in Progress)

DOCSIS
● [LLDOCSIS-spec] DOCSIS® 3.1 MAC and Upper Layer Protocols Interface (MULPI) Specification (i17+)
● [LLDOCSIS-overview] White, G., Sundaresan, K., and Briscoe, B. “Low Latency DOCSIS: Technology Overview” CableLabs White Paper (Feb 2019)

Research papers
● [DCttH] De Schepper, K., Bondarenko, O., Tsang, I.-J. & Briscoe, B., "`Data Centre to the Home': Deployable Ultra-Low Queuing Delay for All," RITE Project Technical report (June 2015)
● [PI2] De Schepper, K., Bondarenko, O., Tsang, I.-J. & Briscoe, B., "PI2 : A Linearized AQM for both Classic and Scalable TCP," In: Proc. ACM CoNEXT 2016 pp.105-119 ACM (December 2016)
● [L4S-MMSYS] Bondarenko, O., De Schepper, K., Tsang, I.-J., Briscoe, B., Petlund, A. & Griwodz, C., "Ultra-Low Delay for All: Live Experience, Live Analysis," In: Proc. ACM Multimedia Systems; Demo Session pp.33:1-33:4

ACM (May 2016)
● [DCTCP] Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S. & Sridharan, M., "Data Center TCP (DCTCP)," Proc. ACM SIGCOMM'10, Computer Communication Review 40(4):63--74

(October 2010)
● [DCTCP-analysis] Alizadeh, M., Javanmard, A. & Prabhakar, B., "Analysis of DCTCP: Stability, Convergence, and Fairness," In: Proc. ACM SIGMETRICS'11 (2011)
● [CC-scaling-tensions] Briscoe, B. & De Schepper, K., "Resolving Tensions between Congestion Control Scaling Requirements," Simula Technical Report TR-CS-2016-001 (July 2017)
● [low-RTT-scaling] Briscoe, B. & De Schepper, K., "Scaling TCP's Congestion Window for Small Round Trip Times," BT Technical report TR-TUB8-2015-002 (May 2015)
● [paced-chirping] Misund, Joakim and Briscoe, Bob, “Paced Chirping: Rapid flow start with very low queuing delay” In Proc IEEE Global Internet Symposium 2019 (Apr/May 2019)

 25

Implementing the
'TCP Prague' Requirements for L4S

Q&A
and spare slides

 26

FAQs
Q. Why is IP-ECN=X1 classified into L4S queue?

This will classify CE as L4S,
which could have started as ECT(0) (non-L4S) or ECT(1) (L4S)
but been marked as CE by an upstream AQM

A. Reordering a few packets with lower delay is the safe way round

Q. Isn't the square-root only for TCP Reno, not Cubic?

A. Typical scenarios: Cubic still in Reno-compatibility mode (see next slide)

Q. Isn't an ECN-capable SYN over the Internet a flooding attack vulnerability?

A. No. ECN AQMs disable ECN marking under persistent overload (IETF requirement)

Q. Does fq_CoDel fit into the picture?

A. Yes. As-is, fq_CoDel only gives low latency to low bandwidth flows.
But it could include the last ECN bit in its flow classifier,
and implement a simple immediate AQM in any ECT(1) queue

Q. What about BBR?

A. BBR & L4S have complementary goals, and could be combined into one compound congestion control.

TCP Prague gives much lower delay than BBR, and is much more responsive to other traffic,
but where there is no L4S support in the network TCP Prague is merely no worse than Reno.

BBR addresses the latter case, where there is no AQM in the network. So if L4S could fall back to BBR
when it detected no L4S support in the network, the user would see lower delay everywhere,
and still get much better performance where there was network support for L4S.

Codepoint IP-ECN bits Meaning

Not-ECT 00 Not ECN-Capable Transport

ECT(0) 10 Classic ECN-Capable Transport

ECT(1) 01 L4S ECN-Capable Transport

CE 11 Congestion Experienced

 27

FAQs
● What about the SCE proposal for ECT(1)?

● Caveat: reverse engineered from unclear initial draft

● L4S incremental deployment:
● ECN used as classifier

to isolate low latency flows
● works with DualQ or per-flow Q
● CE → L4S even if originally ECT(0)

● SCE incremental deployment:
● ECN not used as classifier
● need another classifier

to isolate low latency flows
● so only works with per-flow Q

Codepoint IP-ECN bits Meaning

Not-ECT 00 Not ECN-Capable Transport

ECT(0) 10 Classic ECN-Capable Transport

SCE 01 Some Congestion Experienced

CE 11 Congestion Experienced

Codepoint IP-ECN bits Meaning

Not-ECT 00 Not ECN-Capable Transport

ECT(0) 10 Classic ECN-Capable Transport

ECT(1) 01 L4S ECN-Capable Transport

CE 11 Congestion Experienced

ECN
Classifier

 L4S

Classic

flow
Classifier ..

.

Classification Marking

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.28

ECN transitions
● RFC3168 & RFC8311

● ECT(0) → CE
● ECT(1) → CE

● RFC6040 added support for RFC6660
● ECT(0) → ECT(1)

● Many encapsulations will still be pre-RFC6040
● decap will revert ECT(1)

● Ambiguity of CE
● ECT(0) → CE early on path

CE → L4S queue later on path
● 5 unlikely scenarios have to coincide

to cause an occasional spurious re-xmt

incoming
inner

incoming outer

Not-ECT ECT(0) ECT(1) CE

Not-ECT Not-ECT Not-ECT Not-ECT
Not-ECT

drop

ECT(0) ECT(0) ECT(0) ECT(0) CE

ECT(1) ECT(1) ECT(1) ECT(1) CE

CE CE CE CE CE

Outgoing header (RFC4301 \ RFC3168)

incoming
inner

incoming outer

Not-ECT ECT(0) ECT(1) CE

Not-ECT Not-ECT Not-ECT Not-ECT drop

ECT(0) ECT(0) ECT(0) ECT(1) CE

ECT(1) ECT(1) ECT(1) ECT(1) CE

CE CE CE CE CE

Outgoing header (RFC6040)
(bold = change for all IP in IP)

Distinguishing features of L4S & SCE
L4S SCE

No. of queues
(see prev slide)

• either dual-queue or per-flow queue • per-flow queue only

Legacy flow coexistence at:
● non-ECN bottleneck ● simple to fall back to classic ● simple to fall back to classic
● FQ classic ECN bottleneck ● no prob ● no prob
● 1Q classic ECN bottleneck • requires heuristic to fall back to

classic
● simple to fall back to classic

ECN TCP feedback req'd
from recvr

• sndr can force classic ECN rcvr to
give fine-grained feedback
(unreliable delivery)

• or fully works with base AccECN rcvr

• No ECT(1) feedback in TCP
without new AccECN TCP
option

Additional link benefits • Enables links to optimize for new
sender behavior (e.g. out-of-order
tolerance)

Congestion control status • DCTCP - widespread deployment
experience

• A high-level idea

 30

Low delay and high throughput
● ~10x lower delay than state-of the art AQMs
● with capacity-seeking behaviour – TCP-like and adaptive real-time
● for all packets, not just a 'low delay' class

● IETF's experimental track L4S architecture
 –––
Low Latency
Low Loss
Scalable throughput

● Also adopted in DOCSIS 3.1

[RFC8311], [ietf-l4s-arch], [LLDOCSIS-spec], [LLDOCSIS-overview]

 31

Ultra-low latency
for every application

● Not only non-queue-building traffic
● DNS, gaming, voice, SSH, ACKs, HTTP requests, etc

● Capacity-seeking traffic as well
● TCP, QUIC, RMCAT for WebRTC
● web, HD video conferencing, interactive video, cloud-

rendered virtual reality, augmented reality,
remote presence, remote control,
interactive light-field experiences,...

[L4S-MMSYS]

 32

DualQ Coupled AQM
latency isolation, but bandwidth pooling

Classifier

 L4S

Classic

L4S AQM
ECN marking

Classic AQM
drop/marking

Classic
sender

Scalable
sender

Coupling
conditional

priority
scheduler

● L4S-ECN: senders set ECT(1) → classifies into L4S queue
Codepoint IP-ECN bits Meaning

Not-ECT 00 Not ECN-Capable Transport

ECT(0) 10 Classic ECN-Capable Transport

ECT(1) 01 L4S ECN-Capable Transport

CE 11 Congestion Experienced

Classic
sender

see Olga's later talk: DualPI2 qdiscsee Olga's later talk: DualPI2 qdisc
[RFC8311], [ietf-ecn-l4s-id], [dualpi2-netdev], [ietf-dualq-aqm]

 33

r: packet rate per flow
p: drop or marking probability
r: packet rate per flow
p: drop or marking probability

DualQ Coupled AQM
latency isolation, but bandwidth pooling

rL∝1 / pL

Classifier

 L4S

Classic

L4S AQM
ECN marking

Classic AQM
drop/marking

Classic
sender

Scalable
sender

Coupling

rC∝1/√ pC

conditional
priority

scheduler

pL

pC∝ pL
2

● flow rate 'fairness' across the two queues

1) classic congestion control (TCP & QUIC):
rate depends on the square root of the drop level

2) counterbalanced by the squaring

e.g. p
L
=3% marking

e.g. p
L

2 = 0.09% drop

1
2Classic

sender

● no flow ID inspection, no bandwidth priority

1

2

see Olga's later talk: DualPI2 qdiscsee Olga's later talk: DualPI2 qdisc
[RFC8311], [ietf-ecn-l4s-id], [dualpi2-netdev], [ietf-dualq-aqm]

 34

Potential Minor change to FQ-CoDel
to support L4S

● Don't need to couple AQMs if you have FQ
● FQ-CoDel target used to be lower for ECN-capable flows
● A simple patch could use a shallow target for ECT(1) flows

● L4S AQM is stateless: just immediate shallow threshold ECN marking

● Open question
● Whether/how to schedule L4S flows

with latency priority but not bandwidth priority

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

