#### ICN LOWPAN draft-irtf-icnrg-icnlowpan-02 IETF 104, Prague

<u>Cenk Gündoğan</u><sup>1</sup> Thomas Schmidt<sup>1</sup> Matthias Wählisch<sup>2</sup> Christopher Scherb<sup>3</sup> Claudio Marxer<sup>3</sup> Christian Tschudin<sup>3</sup>

<sup>1</sup>HAW Hamburg

<sup>2</sup>Freie Universität Berlin

<sup>3</sup>University of Basel

March 29, 2019

#### **Draft Updates**

 $\tt draft-irtf-icnrg-icnlowpan-01 \Rightarrow \tt draft-irtf-icnrg-icnlowpan-02$ 

#### Update since -01

- Time TLV: InterestLifetime & ContentFreshness
- Implementation Report & Guidance section

# RFC5497 – Time TLV



#### Objective

- Represent time value in Mobile Ad Hoc Networks (MANETs)
- Encoding uses 1 byte
- Focus on wide range with less precision

time value =  $(1 + \frac{a}{8}) \cdot 2^b \cdot C$ 

$$C = \frac{1}{1024}$$

min:  $(1 + \frac{0}{8}) \cdot 2^{0} \cdot \frac{1}{1024} = \frac{1}{1024} \approx 0.9 \text{ ms}$ max:  $(1 + \frac{7}{8}) \cdot 2^{31} \cdot \frac{1}{1024} = 15 \cdot 2^{28} \cdot \frac{1}{1024} \approx 45 \text{ days}$ 



# ICNLoWPAN Time TLV (1)

- Time values for InterestLifetime (CCNx/NDN) & ContentFreshness (NDN)
- $\blacktriangleright$  Former approach: linear scaling using 2 bytes pprox 64 seconds
- Reuse 2 bytes for Time TLV

```
time code
  0
                   2
                            3
                                    4
                                            5
                                                     6
                                                              7
                                                                      8
                                                                              9
                                                                                      10
                                                                                              11
                                                                                                       12
                                                                                                               13
                                                                                                                        14
                                                                                                                                15
       exponent (b)
                                                                           mantissa (a)
time value = (1 + \frac{a}{20/8}) \cdot 2^{b} \cdot C, with C = \frac{1}{102/6}
min: (1 + \frac{0}{20/8}) \cdot 2^{\circ} \cdot \frac{1}{102/4} = \frac{1}{102/4} \approx 0.9 \text{ ms}
max: (1 + \frac{2047}{2048}) \cdot 2^{31} \cdot \frac{1}{1024} = 4095 \cdot 2^{20} \cdot \frac{1}{1024} \approx 48 \text{ days}
```

### ICNLoWPAN Time TLV (2)

- min:  $C = \frac{1}{1024}$  s  $\approx$  0.9 ms, not possible to represent 0 s
- Protocols MAY use o s, e.g., InterestLifetime/ContentFreshness of o s
- We define: time code o = o s instead of C s
- $\Rightarrow$  1. minimum = 0 *ms*, for a = 0, b = 0
- $\Rightarrow$  2. minimum  $\approx$  0.9 *ms*, for *a* = 1, *b* = 0
- $\Rightarrow$  maximum  $\approx$  48 days, for a = 2047, b = 31

# **ICNLoWPAN Time TLV Problems**

#### Application may choose invalid time value

#### Interest

- Originator: round-up to nearest time code before signing
- Forwarder: round-up only if no signature is present
- > Forwarder: send uncompressed if invalid time value & signature is present

#### Data

- Originator: round-up to nearest time code before signing
- > Forwarder: send uncompressed if invalid time value

#### **Experimental Evaluations**

# ICNLoWPAN – Named-Data Networking for Low Power IoT Networks

Cenk GündoğanPeter KietzmannThomas C. SchmidtMatthias WählischHAW HamburgHAW HamburgFreie Universität Berlincenk.guendogan@haw-hamburg.depeter.kietzmann@haw-hamburg.det.schmidt@haw-hamburg.dem.waehlisch@fu-berlin.de

#### IFIP Networking 2019

# Experimental Evaluations: Setup



Name<sub>short</sub> = /org/example/temp/id<sub>x</sub>

Namelong = /org/example/building/1/floor/4/room/481/temp/idx

# **Results: Processing Times**



# **Results: Processing Times**



### Results: Processing Times



#### **Results: Message Sizes**



#### Results: Message Sizes



#### Results: Message Sizes



# Results: Energy Consumption (1)



Producer

# Results: Energy Consumption (1)



# Results: Energy Consumption (2)

|      | Consumer              |                      | Forwarder                   |                      | Producer              |                      |
|------|-----------------------|----------------------|-----------------------------|----------------------|-----------------------|----------------------|
|      | Name <sub>short</sub> | Name <sub>long</sub> | <i>Name<sub>short</sub></i> | Name <sub>long</sub> | Name <sub>short</sub> | Name <sub>long</sub> |
| CoAP | 548.58 $\mu$ J        | 612.24 $\mu$ J       | 967.41 $\mu$ J              | 1072.07 $\mu$ J      | 464.73 $\mu$ J        | 517.96 $\mu$ J       |
| NDN  | 526.23 $\mu$ J        | 687.26 $\mu$ J       | 880.68 µJ                   | 1152.02 $\mu$ J      | 422.55 $\mu$ J        | 584.82 $\mu$ J       |
| ICNL | 466.09 $\mu$ J        | 487.32 $\mu$ J       | 769.17 $\mu$ J              | 773.97 $\mu$ J       | 369.84 $\mu$ J        | 395.19 $\mu$ J       |

Energy consumption in  $\mu$ J

# Results: Energy Consumption (2)

|      | Consumer              |                      | Forwarder             |                          | Producer                    |                      |
|------|-----------------------|----------------------|-----------------------|--------------------------|-----------------------------|----------------------|
|      | Name <sub>short</sub> | Name <sub>long</sub> | Name <sub>short</sub> | Name <sub>long</sub>     | <i>Name<sub>short</sub></i> | Name <sub>long</sub> |
| CoAP | 548.58 $\mu$ J        | 612.24 $\mu$ Ј       | 967.41 $\mu$ J        | 1072.07 $\mu$ J          | <b>464.73</b> μ <b>J</b>    | 517.96 $\mu$ J       |
| NDN  | 526.23 $\mu$ J        | 687.26 $\mu$ J       | 880.68 µJ             | 1152.02 $\mu$ J          | 422.55 $\mu$ J              | 584.82 $\mu$ J       |
| ICNL | 466.09 $\mu$ J        | 487.32 $\mu$ J       | 769.17 $\mu$ J        | <b>773.97</b> μ <b>J</b> | 369.84 $\mu$ J              | 395.19 $\mu$ J       |

Energy consumption in  $\mu$ J

### Results: Energy Consumption (2)



### Outlook

#### ICNLoWPAN

- Adds minimal convergence complexity
- Reduces message buffer sizes
- Shortens in-flight time of messages
- Decreases energy consumption
- $\Rightarrow$  Benefits outweigh added compression complexity

#### How should we proceed? Request more (technical) feedback?