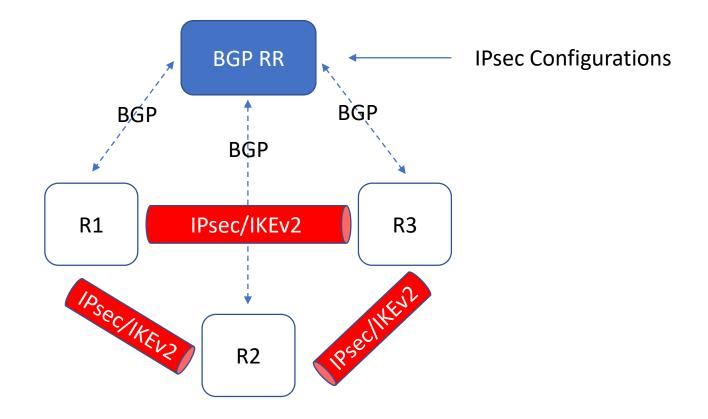
# BGP Signaled IPsec Tunnel Configuration

Hu Jun, Nokia 3/5/2019

#### Problem

In some networks, there is need to encrypt traffic between routers, which is typically done by putting traffic into IPsec tunnel; however when the number of router is big, it is difficult to provision and manage large number of mesh IPsec tunnels on all routers, specially when a simple hub-and-spoke topology can't use used;


A more efficient way to provision IPsec tunnel is needed for such cases;

#### Design Considerations

- 1. Not trying to be a cure for everything, just to address IPsec config provision problem
- 2. The solution shouldn't trade off security
- 3. Avoid reinventing wheel, reuse existing protocol wherever possible, and keep changes minimal

#### Solution

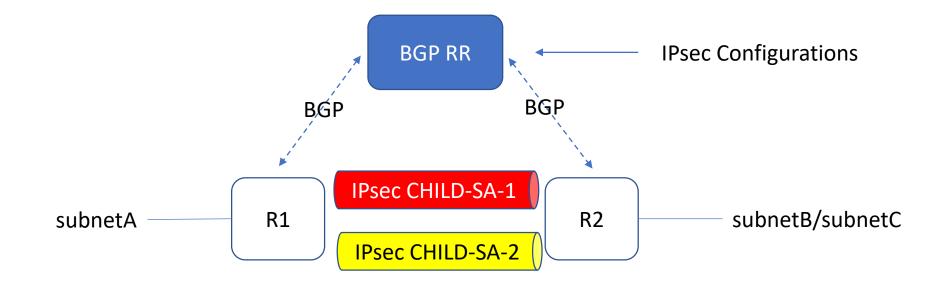
- This draft defines a method of using BGP to signal IPsec tunnel configuration along with NLRI, it uses and extends tunnel encapsulation attribute as specified in [I-D.ietf-idr-tunnelencaps] for IPsec tunnel.
- BGP is only used to signal certain IPsec configuration, the IPsec tunnel is still created via IKEv2 between routers after the configuration is learned via BGP UPDATES.



### BGP Tunnel Encapsulation Attribute Extensions for IPsec

This document extends tunnel encapsulation attribute specified in [I-D.ietf-idr-tunnelencaps] by introducing following changes:

- A tunnel type for IPsec tunnel: ESP tunnel mode (AH tunnel mode is not included in this document). Existing type 4 (IPsec in Tunnelmode) in IANA "BGP Tunnel Encapsulation Attribute Tunnel Types" registry could be reused
- A new sub-TLV for public routing instance: where IPsec packet is forwarded in, which could be different from payload packet
- A new sub-TLV for remote address prefix: remote traffic selector (from receiver POV)
  - Another way to do this is to use recursive lookup, but need more updates
- A new sub-TLV for local address prefix: local traffic selector (from receiver POV)


It also reuses following existing sub-TLV:

- Remote Endpoint: IPsec tunnel endpoint address
- Color: IPsec configuration attributes like ESP transform; the meaning of this sub-TLV is local to the administrative domain
- Embedded Label Handling: see section 4 of draft for detail

#### **Operation Example**

**Requirements:** 

- Traffic between subnetA subnetB: ESP tunnel, AES-CBC-256 with SHA-384, mapping to color red
- Traffic between subnetA subnetC: ESP tunnel, null encryption with only integrity protection, SHA-256, mapping to color yellow



### Operation Example (Cont.)

- 1. Both R1 and R2 are provisioned with PKI key and certificate from same CA.
- 2. R1 advertise subnetA in BGP UPDATE, which has a tunnel encapsulation attribute that contains IPsec TLVs:
  - TLV-1: Remote Endpoint sub-TLV R1TunnelAddr, color sub-TLV red and subnetB in Local Prefix sub-TLV.
  - TLV-2: Remote Endpoint sub-TLV R1TunnelAddr, color sub-TLV yellow and subnetC in Local Prefix sub-TLV.
- 3. R2 advertise subnetB in BGP UPDATE, which has a tunnel encapsulation attribute that contains one IPsec TLV : Remote Endpoint sub-TLV R2TunnelAddr, color sub-TLV red and subnetA in Local Prefix sub-TLV.
- 4. R2 advertise subnetC in BGP UPDATE, which has a tunnel encapsulation attribute that contains one IPsec TLV: Remote Endpoint sub-TLV R2TunnelAddr, color sub-TLV yellow and subnetA in Local Prefix sub-TLV.

### Operation Example (Cont.)

- 5. R1 received a packet from subnetA destined to subnetB, since BGP UPDATE contain subnetB also contains an IPsec tunnel encapsulation attribute, there is no existing CHILD SA could be used, R1 select TLV-1 and uses IKEv2 to establish an IPsec tunnel to R2TunnelAddr, using certificate authentication, create 1st CHILD SA CHILDSA1:
  - ESP transform: AES-CBC-256 and SHA-384
  - Traffic Selector:
    - TSi: address subnetA, protocol any, port any
    - TSr: address subnetB, protocol any, port any
- 6. after tunnel is created, R1 and R2 could forward traffic between subnetA and subnetB over CHILDSA1
- 7. R1 received a packet from subnetA destined to subnetC, CHILDSA1 can't be used for this packet, R1 select TLV-2 to create 2nd CHILD SA, and given there is already an IKE SA between R1 and R2, R1 uses existing IKESA to create CHILDSA2:
  - ESP transform: Null encryption with SHA-256
  - Traffic Selector:
    - TSi: address subnetA, protocol any, port any
    - TSr: address subnetC, protocol any, port any
- 8. R1 and R2 could forward traffic between subnetA and subnetC over CHILDSA2

#### Summary & Benefits

This draft propose a method using BGP to signal IPsec configuration by extending BGP Tunnel Encapsulation attribute, while still using IKEv2 to create the tunnel.

Main benefits of this proposal are:

- Decouple IPsec configuration from key exchange and tunnel negotiation, be able to leverage best of each side; allow future development independently.
- By reusing IKEv2, a field proven, mature protocol, not sacrificing security
- Only limited extension to BGP, no change to IPsec/IKEv2
- Inter-op with router that doesn't support this draft, which allow graceful transition

## Next Step?

#### Support other types of encryption tunnel like DTLS?