

SOCKS Protocol Version 6
draft-olteanu-intarea-socks-6-06

Vladimir Olteanu

SOCKS Sessions
● (Elegantly) share state across multiple requests

– Done since -01, but on a per-username basis

● Motivation
– Tor
– Credential sharing across clients (e.g. multiple

browsers)

Tor

● One circuit per bar domain
● Current behavior: use SOCKS5 + username/password authentication
● Encode bar domain in username (i.e. username = “wikipedia.org”)

Same domain =
same circuit

Idempotence + shared credentials (-05)

● Clients risk spending
each other’s tokens

● At best: occasional
wasted RTTs

Spend 1

OK, Window = (2-101)

Spend 1

Out-of-window,

Window = (2-101)

C
li

en
t

X
C

li
en

t
Y

P
ro

x
y

Spend 2

OK, Window = (3-102)

X

Idempotence + shared credentials (-05)

● Clients risk spending
each other’s tokens

● At best: occasional
wasted RTTs

● At worst: livelock

Spend 1

Spend 1

X

Y

P
ro

x
y

XSpend 2

Spend 2

X

Y
XSpend 3

Spend 3

X

Y
XSpend 4

Spend 4

X

Y
X

Other motivators (-05)
● Unauthenticated clients:

– Can’t use Idempotence options
– Can’t use Listen Backlog options

● Shared credentials + BIND Backlog: X “listens”
and Y can accept X’s connections

SOCKS Sessions
● Proxy holds shared state on a per-session basis

– Was on a per-username basis

● (By default) authentication is waived once a session is established
● The proxy decides when to kill a session (e.g. using inactivity timers)

– The client can also instruct it to do so

● All options are part of Requests and Authentication Replies
– Only the client-proxy RTT is relevant

SOCKS Session options
+------+--------+------+---------------------+

| Kind | Length | Type | Session Option Data |

+------+--------+------+---------------------+

| 1 | 2 | 1 | Variable |

+------+--------+------+---------------------+

● Type: Request, ID, Teardown, OK, Invalid,
Untrusted

● Option data: only used by Session ID options

Establishing a session
● The session-initiating request

also part of the session
– Corollary 1: can also request a

token window, etc.
– Corollary 2: can’t initiate a

session from within a session

● Session ID: opaque sequence
of bytes (arbitrary length)

Request + Session Request

Auth. Reply

C
li

en
t

P
ro

xy(Authentication)

Auth. Reply

+ Session ID = SID

Further requests
● The client’s

credentials are tied to
the Session ID

● Authentication is no
longer performed

Request + Session ID = SID

C
li

en
t

P
ro

xy

Auth. Reply

+ Session OK

Invalid Session ID
● Authentication

automatically fails
(even if not required
by proxy policy)

Request + Session ID = SID

C
li

en
t

P
ro

xy

Auth. Reply

+ Session Invalid

Session teardwon
● Free session state

early, rather than after
a timeout

● The session-killing
Request is part of the
session

Request + Session ID = SID+ Session Teardown

C
li

en
t

P
ro

xy

Auth. Reply

+ Session OK

Untrusted sessions
● The client must authenticate

every time it makes a Request
– With the same credentials

● Only protects against passive
attackers

● Open question: Do we want
this feature?
– Or just leave security to TLS?

Request + Session Request

Auth. Reply

C
li

en
t

P
ro

xy(Authentication)

Auth. Reply

+ Session ID = SID

+ Session Untrusted

Other changes in -06
● Future-proofing: options have a 2-byte length field

– Can fit X.509 certificates etc.

● Option count (max 255) replaced with options length (2 bytes, but
capped at 16KB)

● Authentication methods: eliminated user data encryption
– Backward compatibility: encryption can still be negotiated, but it is not honored
– Can still run SOCKS over TLS.

● Nits and quality-of-life changes for implementers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

