Christian Hopps
LabN Consulting, LLC

# IP Traffic Flow Security

Improving IPsec Traffic Flow Confidentiality

1

# Why?

- Traffic Analysis is the act of extracting information about data being sent through a network (RFC4301, [AppCrypt]).
  - Need to protect against this.
- One may directly obscure data using encryption (IPsec/ESP).
- However, the traffic pattern itself exposes information due to variations in its shape and timing ([AppCrypt], [I-D.iab-wire-image], [USENIX]).
- Hiding the size and frequency of traffic is referred to as Traffic Flow Confidentiality (TFC) in RFC4303.

# Current Available Option: ESP + Padding

- RFC4303.
- Send fixed-sized ESP packets with padding.
  - Each ESP packet can only carry 0 or 1 IP packets padded to fixed size.
- Sub-optimal performance.
  - Increased latency.
  - Low bandwidth.
    - For many inner packet sizes, the reduction is drastic.

# Proposed IPsec Improvement - IP-TFS

- Continue to use IPsec/ESP
- Fragment and aggregate IP packets into new IPsec/ESP payload.
- Minimal latency increase.
- Constant High Bandwidth.
  - Higher than raw Ethernet for small to medium inner packet sizes.



### Key Design Points

- Improve on existing IPsec (ESP + Padding) option.
  - Fragment and Aggregate inner packets.
- Fixed-size encapsulating packets.
- Constant send rate.
- Unidirectional.
- Congestion Controlled and Non-CC operating modes.
- Uses IPsec/ESP.
- [Optional] IKEv2 Additions.
- Minimize configuration required.

### **IPsec Transport**

- Use IPsec/ESP (encrypted encapsulation) as transport.
- Input packets are fragmented and aggregated into IPsec/ESP.
- New IP Protocol Number for new ESP payload (framing).

### Fixed-Size Packets / Constant Send Rate

- Packet size never varies.
- Packet size manual or automatic configuration.
- Can use Path MTU Discovery for automatic optimal configuration.
- Constant send rate.
- Provides for transport flow confidentiality.

### Unidirectional/Bidirectional

- Data path is unidirectional.
  - Sender to Receiver.
- Congestion-Control (CC) info is sent in reverse direction.
  - · Receiver to Sender.
- Configure 2 paths for bidirectional operation.

### Variation Fully Allowed

- Egress must accept packets at any rate.
- Egress must accept packets of any size.
- IPSec tunnels can start in normal "IP Mode", transition to IP-TFS.
  - SA reset required to leave IP-TFS mode.

### Congestion Controlled (CC) Mode

- Packet send rate adjusted, as packet size fixed.
  - Congestion causes packet drops not byte drops.
- CC Info sent from Receiver to Sender using IKEv2.
- Sender uses CC algorithms to modify packet send rate.
- CC algorithm a local choice.
  - No need to standardize.
- Circuit breaking supported.
- ECN supported, but off by default.

### Non-Congestion-Controlled Mode

- For use when IP path bandwidth can be guaranteed.
- Packet loss reported by receiver to admin/operations.
- Optional CC info can be used to report packet loss from sender.
- Optional CC info can be used for circuit breaker.

### IKEv2 (CC Info)

- Use IKEv2 for CC info advertisement.
- Use INFORMATION "exchange" Notification Data.
- Periodic send interval (e.g., 1 per second).
- CFG\_REQUEST/CFG\_REPSPONSE used to configure interval.
- 0 interval allowed for no send.
- \* Non-reliable transport (\*may need to change).

### **IP-TFS Packet Format**

| • | Outer Encapsulating Header |             |  |  |  |  |  |  |
|---|----------------------------|-------------|--|--|--|--|--|--|
| • | ESP Header                 |             |  |  |  |  |  |  |
|   | V  Reserved                | BlockOffset |  |  |  |  |  |  |
|   | Data Blocks Payload        | ^           |  |  |  |  |  |  |
| 4 | +                          |             |  |  |  |  |  |  |
| • | . ESP Trailer              |             |  |  |  |  |  |  |
|   |                            |             |  |  |  |  |  |  |

### ESP Payload Format



- **V** :: Version, must be set to zero and dropped if set to 1.
- **Reserved** :: set to 0 ignored on receipt.
- **Block Offset**:: This is the number of bytes before the next IP/IPv6 data block. It can point past the end of the containing packet in which case this packet is the continuation of a preivous one and possibly padding. NOTE: This can point into the next packet and yet the current packet can end with padding. This will happen if there's not enough bytes to start a new inner packet in the current outer packet.
- **Data Blocks** :: variable number of bytes that constitute the start or continuation of a previous data block.

#### Data Blocks

```
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
```

#### Version

- 0x0 for pad.
- 0x4 for IPv4.
- 0x6 for IPv6.

#### IPv4 Data Blocks

```
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
```

- **Version** :: 0x4 for IPv4.
- **Total Length** :: Length of the IPv4 inner packet.

#### IPv6 Data Blocks

```
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
```

- **Version** :: 0x6 for IPv6.
- **Total Length** :: Length of the IPv4 inner packet.

#### Pad Data Blocks

```
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
```

- **Version** :: 0x0 for Padding.
- **Padding** :: extends to end of the encapsulating packet.

### IKEv2 Config CC Info Sending Interval Attribute

- R:: 1 bit set to 0.
- Attribute Type:: 15 bit value set to TFS\_INFO\_INTERVAL (TBD).
- Length:: 2 octet length set to 2.
- Interval :: 2 octet unsigned integer. The sending interval in milliseconds.

#### CC Info Notification Data



- E:: A 1 bit value that if set indicates that packet[s] with Congestion Experienced (CE) ECN bits set were received and used in calculating the DropCount value.
- **Reserved** :: set to 0 ignored on receipt.
- **DropCount**:: For ack data block this is the drop count between AckSeqStart and AckSeqEnd, If the drops exceed the resolution of the counter then set to the max value.
- **Timestamp** :: The time when this notification was created and sent.
- AckESPSeqStart :: The first ESP Seq. Num. of the range that this information relates to.
- AckESPSeqEnd:: The last ESP Seq. Num. of the range that this information relates to.

# Comparison Data

# Overhead Comparison in Octets

|   | Type   | ESP+Pad | ESP+Pad | ESP+Pad | IP-TFS | IP-TFS  | IP-TFS | ı  |
|---|--------|---------|---------|---------|--------|---------|--------|----|
|   | L3 MTU | 576     | 1500    | 9000    | 576    | 1500    | 9000   | ı) |
|   | PSize  | 540     | 1464    | 8964    | 536    | 1460    | 8960   | i  |
| - |        | +       | +       | +       | +      | <b></b> | +      | į. |
|   | 40     | 500     | 1424    | 8924    | 3.0    | 1.1     | 0.2    | ļ  |
|   | 128    | 412     | 1336    | 8836    | 9.6    | 3.5     | 0.6    | ı  |
|   | 256    | 284     | 1208    | 8708    | 19.1   | 7.0     | 1.1    | i) |
|   | 536    | 4       | 928     | 8428    | 40.0   | 14.7    | 2.4    | ı  |
|   | 576    | 576     | 888     | 8388    | 43.0   | 15.8    | 2.6    | ı) |
|   | 1460   | 268     | 4       | 7504    | 109.0  | 40.0    | 6.5    | )  |
|   | 1500   | 228     | 1500    | 7464    | 111.9  | 41.1    | 6.7    | ı  |
|   | 8960   | 1408    | 1540    | 4       | 668.7  | 245.5   | 40.0   | 1  |
|   | 9000   | 1368    | 1500    | 9000    | 671.6  | 246.6   | 40.2   |    |

# Overhead as Percentage of Inner Packet

| Type<br>MTU<br>PSize | ESP+Pad<br>576        | ESP+Pad<br>  1500      | ESP+Pad<br>9000        | IP-TFS<br>  576     | IP-TFS<br>1500        | IP-TFS<br>9000<br>8960 |                |
|----------------------|-----------------------|------------------------|------------------------|---------------------|-----------------------|------------------------|----------------|
| 40                   | 540<br>+<br>  1250.0% | 1464<br>+<br>  3560.0% | 8964<br><br>  22310.0% | 536<br>+<br>  7.46% | 1460  <br><br>  2.74% | 8960<br>  <br>  0.45%  | <br> <br> <br> |
| 128                  | 321.9%                | 1043.8%                | 6903.1%                | 7.46%               | 2.74%                 | 0.45%                  |                |
| 256<br>536           | 110.9%<br>  0.7%      | 471.9%<br>  173.1%     | 3401.6%<br>1572.4%     | 7.46%<br>7.46%      | 2.74%<br>2.74%        | 0.45%<br>0.45%         |                |
| 576<br>1460          | 100.0%<br>  18.4%     | 154.2%<br>0.3%         | 1456.2%<br>514.0%      | 7.46%<br>7.46%      | 2.74%<br>2.74%        | 0.45%<br>0.45%         |                |
| 1500<br>8960         | 15.2%<br>15.7%        | 100.0%<br>17.2%        | 497.6%<br>0.0%         | 7.46%<br>7.46%      | 2.74%<br>2.74%        | 0.45%<br>0.45%         |                |
| 9000                 | 15.2%                 | 16.7%                  | 100.0%                 | 7.46%               | 2.74%                 | 0.45%                  |                |

### Bandwidth Utilization over Ethernet

|      | Enet  | ESP   | E + P | E + P | E + P | IPTFS | IPTFS | IPTFS |  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|      | any   | any   | 590   | 1514  | 9014  | 590   | 1514  | 9014  |  |
| Size | 38    | 74    | 74    | 74    | 74    | 78    | 78    | 78    |  |
|      | +     | ++    |       | +     | ++    |       |       | +     |  |
| 40   | 47.6% | 35.1% | 6.5%  | 2.6%  | 0.4%  | 87.3% | 94.9% | 99.1% |  |
| 128  | 77.1% | 63.4% | 20.8% | 8.3%  | 1.4%  | 87.3% | 94.9% | 99.1% |  |
| 256  | 87.1% | 77.6% | 41.7% | 16.6% | 2.8%  | 87.3% | 94.9% | 99.1% |  |
| 536  | 93.4% | 87.9% | 87.3% | 34.9% | 5.9%  | 87.3% | 94.9% | 99.1% |  |
| 576  | 93.8% | 88.6% | 46.9% | 37.5% | 6.4%  | 87.3% | 94.9% | 99.1% |  |
| 1460 | 97.5% | 95.2% | 79.3% | 94.9% | 16.2% | 87.3% | 94.9% | 99.1% |  |
| 1500 | 97.5% | 95.3% | 81.4% | 48.8% | 16.6% | 87.3% | 94.9% | 99.1% |  |
| 8960 | 99.6% | 99.2% | 81.1% | 83.2% | 99.1% | 87.3% | 94.9% | 99.1% |  |
| 9000 | 99.6% | 99.2% | 81.4% | 83.6% | 49.8% | 87.3% | 94.9% | 99.1% |  |

# Latency

- Latency values seem very similar
- IP-TFS values represent max latency
- IP-TFS provides for constant high bandwidth
- ESP + padding value represents min latency
- ESP + padding often greatly reduces available bandwidth.

|   | <br> <br> | ESP+Pad<br>1500 | ESP+Pad<br>  9000<br> | IP-TFS<br>  1500<br> | IP-TFS  <br>  9000  <br> |  |
|---|-----------|-----------------|-----------------------|----------------------|--------------------------|--|
| İ | +         |                 | <b></b>               | +                    | +                        |  |
| ĺ | 40        | 1.14 us         | 7.14 us               | <b>1.1</b> 7 us      | 7.17 us                  |  |
|   | 128       | 1.07 us         | 7.07 us               | <b>1.10</b> us       | 7.10 us                  |  |
|   | 256       | 0.97 us         | 6.97 us               | <b>1.</b> 00 us      | 7.00 us                  |  |
|   | 536       | 0.74 us         | 6.74 us               | 0.77 us              | 6.77 us                  |  |
|   | 576       | 0.71 us         | 6.71 us               | 0.74 us              | 6.74 us                  |  |
|   | 1460      | 0.00 us         | 6.00 us               | 0.04 us              | 6.04 us                  |  |
|   | 1500      | 1.20 us         | 5.97 us               | 0.00 us              | 6.00 us                  |  |

### Related Work – IEEE

- An Ethernet TFS problem statement along with high level requirements were presented to the 802.1 Security Task Force at March 2019 meeting.
  - <a href="http://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf">http://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf</a>
- The group discussed complementary amendments to 802.1AE Media Access Control (MAC) Security (MACsec) to address the requirements and fit with existing MACsec.
- Progress on the above is anticipated in upcoming interim meetings.

## Running Code

- https://github.com/LabNConsulting/iptfs [will be present by meeting]
- Proof-of-concept code.
- IP in UDP tunnel encapsulation.
  - UDP stands in for ESP
- Implements new IP-TFS payload.
  - Inner packet fragmentation and aggregation using Datablocks
- Implements Congestion Control Info Reports.
  - Sent in UDP rather than IKEv2.
- Auto-adjusts send rate correctly based on congestion.
- 2 implementations (Python and C).

## Open Issues

- CC Information Report transmission.
  - Message IDs use.
  - Full INFO exchange (reliable not really needed)
    - The CC data is basically telemetry that doesn't need to be reliably delivered for TFS to function correctly.
    - If reverse direction is lossy could cause TFS tunnel teardown when there is no actual issue with the tunnel traffic.
  - Would it be useful to generalize/legitimize this "in-SA" unreliable notification in IKEv2?
    - Could do this separately, and use normal exchange method for now.

# Questions and Comments

### References

- [AppCrypt] B. Schneier, "Applied Cryptography: Protocols, Algorithms, and Source Code in C", Nov, 2017.
- [I-D.iab-wire-image] B. Trammell, M. Kuehlewind, "The Wire Image of a Network Protocol", Nov 05, 2018
  - https://datatracker.ietf.org/doc/draft-iab-wire-image
- [USENIX] R. Schuster, V. Shmatikov, and E. Tromer, "Beauty and the Burst: Remote Identification of Encrypted Video Streams" 26th USENIX Security Symposium, August 16–18, 2017, Vancouver, BC, Canada
  - https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster