
Quantum Resistant
IKEv2 Update

draft-tjhai-ipsecme-hybrid-qske-ikev2-03

C. Tjhai, M. Tomlinson Post-Quantum, G. Bartlett, S. Fluhrer Cisco Systems,
D. Van Geest ISARA Corporation, O. Garcia-Morchon Philips,

V. Smyslov ELVIS-PLUS

IETF 104

• Quantum Computers will make classical (EC)DH insecure

• Quantum Safe Key Exchange methods (QSKE) are not well
studied yet and currently no single QSKE method is trusted
by cryptographers

o besides most of QSKE methods have large public keys

• The idea is to make it possible in IKEv2 to perform several
different key exchanges in a row, combining classical KE
methods with quantum safe ones

o it is assumed that combination of QSKE methods of different types is more
secure than any of them alone

Protocol Overview

2

• Additional KEs are negotiated in IKE_SA_INIT and performed in a series of
new INTERMEDIATE exchanges between IKE_SA_INIT and IKE_AUTH

Initiator Responder

HDR(IKE_SA_INIT), SA, Ni, KEi, N --> <-- HDR(IKE_SA_INIT), SA, Nr, KEr, N

HDR(INTERMEDIATE), SK {Ni2, KEi2} --> <-- HDR(INTERMEDIATE), SK {Nr2, KEr2}

HDR(INTERMEDIATE), SK {Ni3, KEi3} --> <-- HDR(INTERMEDIATE), SK {Nr3, KEr3}

HDR(IKE_AUTH), SK {IDi, AUTH, TSi, TSr} --> <-- HDR(IKE_AUTH), SK {IDr, AUTH, TSi, TSr}

• After each exchange the IKE SA keys are updated

New SKEYSEED is computed as prf(SK_d(old), KEn_result | Nin | Nrn)

Then, SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, SK_pr are updated as:

{SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr} = prf+ (SKEYSEED, Nin | Nrn | SPIi | SPIr)

• All INTERMEDIATE exchanges are authenticated in IKE_AUTH by inclusion
prf of their content in AUTH payload calculation

Protocol Overview (2)

3

• Additional key exchanges are now negotiated using new
Transform Types in SA Payload

• Using multiple key exchanges in CREATE_CHILD_SA is defined

• IKE_AUX is changed to INTERMEDIATE (to be aligned with
draft-smyslov-ipsecme-ikev2-aux-02)

• IANA considerations section is added

• VendorID and temporary IDs for PQ KE methods are
removed from the draft

Changes from -02 version

4

• Seven new Transform Types are defined:
o Additional Key Exchange 1
o Additional Key Exchange 2
…
o Additional Key Exchange 7

• All these Transform Types, as well as Transform Type 4, share
the same Transform IDs registry – Diffie-Hellman Group
Transform IDs (to be renamed to Key Exchange Transform
IDs)

• QSKE methods will get code points from this registry (as well
as classic (EC)DH groups)

QSKE Negotiation

5

• If Initiator wants to do QSKE, he includes one or more
transforms of type “Additional Key Exchange N” in the
Proposal in SA Payload

• Transforms of these types contain Transform IDs identifying
KE methods the Initiator proposes to perform in
corresponding INTERMEDIATE exchanges

• The relative order of INTERMEDIATE exchanges is defined by
N, so that KE from “Additional Key Exchange N” will be done
before KE from “Additional Key Exchange N+1” etc.

QSKE Negotiation (2)

6

• There is no requirement that N in included transforms are
contiguous (e.g. it’s OK to include only “Additional Key
Exchange 2” and “Additional Key Exchange 5”)

• The Initiator may include NONE Transform ID in any of
“Additional Key Exchange N” transforms, which means that
it’s OK to completely skip INTERMEDIATE exchange for this N

• For compatibility with legacy implementations the Initiator
may include two proposals – one with new Transform Types
and the other – without them

QSKE Negotiation (3)

7

• Transform Type 4 (Diffie-Hellman Group Transform IDs) is
always included and is always performed in the IKE_SA_INIT
(no change from regular IKEv2)

• Since Transform Type 4 and Additional Key Exchange
transforms share the same registry, it’s also possible to
perform one QSKE in the IKE_SA_INIT

o this allows in future to not perform the series of Key Exchanges if a
cryptographically sound QSKE with small public key appears

QSKE Negotiation (4)

8

• Example of Initiator’s policy (perform ECP_521 in IKE_SA_INIT, then NewHope,
then FRODO, then either RLWE or LWE and at the end SIDH or NTRU or nothing)
 SA Payload
 |

 +--- Proposal #1 (Proto ID = IKE(1), SPI size = 8,

 | | 10 transforms, SPI = 0x052357bbc763eb14)

 | +-- Transform ENCR (Name = ENCR_AES_GCM_16)

 | +-- Transform PRF (Name = PRF_HMAC_SHA2_256)

 | +-- Transform D-H (Name = DH_ECP_521)

 | +-- Transform Additional KE 1 (Name = KE_NEWHOPE)

 | +-- Transform Additional KE 3 (Name = KE_FRODO)

 | +-- Transform Additional KE 4 (Name = KE_RLWE)

 | +-- Transform Additional KE 4 (Name = KE_LWE)

 | +-- Transform Additional KE 6 (Name = KE_SIDH)

 | +-- Transform Additional KE 6 (Name = KE_NTRU)

 | +-- Transform Additional KE 6 (Name = NONE)

 |

 +--- Proposal #2 (Proto ID = IKE(1), SPI size = 8,

 | 3 transforms, SPI = 0x052357bbc763eb14)

 +-- Transform ENCR (Name = ENCR_AES_GCM_16)

 +-- Transform PRF (Name = PRF_HMAC_SHA2_256)

 +-- Transform D-H (Name = DH_ECP_521)

QSKE Negotiation (5)

9

• If Initiator wants to use QSKE in case of rekeying IKE SA or
creating/rekeying Child SAs, then there must be a way to do
it with existing CREATE_CHILD_SA

• The idea to put all KEs in a single CREATE_CHILD_SA message
is not good:

o the message would become large in size; although this message could be
fragmented, a single lost fragment would require the whole message to be
resent

o Initiator would need to calculate many public keys before KE methods are
actually negotiated

o INVALID_KE_PAYLOAD semantics would become different comparing to the
regular IKEv2 case

Using QSKE in CREATE_CHILD_SA

10

• Additional KEs are performed in a series of INFORMATIONAL
exchanges followed CREATE_CHILD_SA exchange

• New Notification ADDITIONAL_KEY_EXCHANGE is used to
link these exchanges, because they can be interleaved with
another IKE exchanges

• QSKEs are negotiated in the same manner as in IKE_SA_INIT

• New SA is created only when the last of INFORMATIONAL
exchanges is complete

Using QSKE in CREATE_CHILD_SA (2)

11

• Example:
Initiator Responder

HDR(CREATE_CHILD_SA), SK {SA, Ni, KEi} -->

 <-- HDR(CREATE_CHILD_SA), SK {SA, Nr, KEr,

 N(ADDITIONAL_KEY_EXCHANGE)(link1)}

HDR(INFORMATIONAL), SK {Ni2, KEi2,

N(ADDITIONAL_KEY_EXCHANGE)(link1)} -->

 <-- HDR(INFORMATIONAL), SK {Nr2, KEr2,

 N(ADDITIONAL_KEY_EXCHANGE)(link2)}

HDR(INFORMATIONAL), SK {Ni3, KEi3,

N(ADDITIONAL_KEY_EXCHANGE)(link2)} -->

 <-- HDR(INFORMATIONAL), SK {Nr3, KEr3}

Using QSKE in CREATE_CHILD_SA (3)

12

Next Steps

• Clarify collisions handling in CREATE_CHILD_SA in
case of additional exchanges

• Clarify how keys are computed in
CREATE_CHILD_SA with additional exchanges

• Update IANA Considerations: add request to
rename Diffie-Hellman Group Transform IDs to Key
Exchange Transform IDs

13

Thank you!

• Questions? Comments? Feedback?

• Requirements for QSKE methods?

• Document adoption?

14

