Quantum Resistant
IKEv2 Update

draft-tjhai-ipsecme-hybrid-gske-ikev2-03

C. Tjhai, M. Tomlinson , G. Bartlett, S. Fluhrer
D. Van Geest , 0. Garcia-Morchon
V. Smyslov

Protocol Overview

e Quantum Computers will make classical (EC)DH insecure

* Quantum Safe Key Exchange methods (QSKE) are not well
studied yet and currently no single QSKE method is trusted
by cryptographers

o besides most of QSKE methods have large public keys

 The idea is to make it possible in IKEv2 to perform several
different key exchanges in a row, combining classical KE
methods with quantum safe ones

o itis assumed that combination of QSKE methods of different types is more
secure than any of them alone

Protocol Overview (2)

* Additional KEs are negotiated in IKE_SA_INIT and performed in a series of
new INTERMEDIATE exchanges between IKE_SA_INIT and IKE_AUTH

Initiator Responder

HDR (IKE_SA INIT), SA, Ni, KEi, N --> <-- HDR(IKE_SA INIT), SA, Nr, KEr, N
HDR (INTERMEDIATE) , SK {Ni2, KEi2} --> <-- HDR (INTERMEDIATE), SK {Nr2, KEr2}
HDR (INTERMEDIATE), SK {Ni3, KEi3} --> <-- HDR (INTERMEDIATE), SK {Nr3, KEr3}
HDR (IKE_AUTH), SK {IDi, AUTH, TSi, TSr} --> <-- HDR(IKE_AUTH), SK {IDr, AUTH, TSi, TSr}

» After each exchange the IKE SA keys are updated

New SKEYSEED is computed as prf(SK_d(old), KEn result | Nin | Nrn)
Then, SK d, SK ai, SK ar, SK ei, SK er, SK pi, SK pr are updated as:

{SK d | SK ai | SK ar | SK ei | SK er | SK pi | SK pr} = prf+ (SKEYSEED, Nin | Nrn | SPIi | SPIr)

 AIIINTERMEDIATE exchanges are authenticated in IKE_AUTH by inclusion
prf of their content in AUTH payload calculation

Changes from -02 version

Additional key exchanges are now negotiated using new
Transform Types in SA Payload

Using multiple key exchanges in CREATE_CHILD SA is defined

IKE_AUX is changed to INTERMEDIATE (to be aligned with
draft-smyslov-ipsecme-ikev2-aux-02)

IANA considerations section is added

VendorID and temporary IDs for PQ KE methods are
removed from the draft

QSKE Negotiation

 Seven new Transform Types are defined:

o Additional Key Exchange 1
o Additional Key Exchange 2

o Additional Key Exchange 7

* All these Transform Types, as well as Transform Type 4, share
the same Transform IDs registry — Diffie-Hellman Group
Transform IDs (to be renamed to Key Exchange Transform
IDs)

 QSKE methods will get code points from this registry (as well
as classic (EC)DH groups)

QSKE Negotiation (2)

If Initiator wants to do QSKE, he includes one or more
transforms of type “Additional Key Exchange N” in the
Proposal in SA Payload

Transforms of these types contain Transform IDs identifying
KE methods the Initiator proposes to perform in
corresponding INTERMEDIATE exchanges

The relative order of INTERMEDIATE exchanges is defined by
N, so that KE from “Additional Key Exchange N” will be done
before KE from “Additional Key Exchange N+1” etc.

QSKE Negotiation (3)

 There is no requirement that N in included transforms are
contiguous (e.g. it’s OK to include only “Additional Key
Exchange 2” and “Additional Key Exchange 5”)

* The Initiator may include NONE Transform ID in any of
“Additional Key Exchange N” transforms, which means that
it’s OK to completely skip INTERMEDIATE exchange for this N

* For compatibility with legacy implementations the Initiator

may include two proposals — one with new Transform Types
and the other — without them

QSKE Negotiation (4)

* Transform Type 4 (Diffie-Hellman Group Transform IDs) is
always included and is always performed in the IKE_SA_INIT
(no change from regular IKEv2)

e Since Transform Type 4 and Additional Key Exchange
transforms share the same registry, it’s also possible to
perform one QSKE in the IKE_SA_INIT

o this allows in future to not perform the series of Key Exchanges if a
cryptographically sound QSKE with small public key appears

QSKE Negotiation (5)

 Example of Initiator’s policy (perform ECP_521 in IKE_SA_INIT, then NewHope,
then FRODO, then either RLWE or LWE and at the end SIDH or NTRU or nothing)

SA Payload
|
+-—-— Proposal #1 (
| |
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
| +-— Transform
|
+-—— Proposal #2 (

+-— Transform ENCR (
+-—— Transform PRF (
+-— Transform D-H

Proto ID

PRE (
D-H (
Additional
Additional
Additional
Additional
Additional
Additional
Additional

Proto ID

IKE (1),
10 transforms,
ENCR (Name = ENCR AES GCM 16)

Name =
Name =

SPI size

SPI

8,
0x052357bbc763ebl4d)

PRF_HMAC SHA2 256)
= DH ECP 521)
KE 1 (Name = KE_NEWHOPE)
KE 3 (Name = KE_FRODO)
KE 4 (Name = KE RLWE)
KE 4 (Name = KE LWE)
KE 6 (Name = KE_SIDH)
KE 6 (Name = KE NTRU)
KE 6 (Name = NONE)
IKE(l), SPI size = 8,

3 transforms,

Name

Name

SPI = 0x052357bbc763ebld)
ENCR_AES GCM 16)
PRF_HMAC SHA2 256)

(Name = DH ECP 521)

Using QSKE in CREATE CHILD SA

* If Initiator wants to use QSKE in case of rekeying IKE SA or
creating/rekeying Child SAs, then there must be a way to do
it with existing CREATE_CHILD_SA

* The idea to put all KEs in a single CREATE_CHILD SA message
is not good:

o the message would become large in size; although this message could be

fragmented, a single lost fragment would require the whole message to be
resent

o Initiator would need to calculate many public keys before KE methods are
actually negotiated

o INVALID_KE_PAYLOAD semantics would become different comparing to the
regular IKEv2 case

Using QSKE in CREATE CHILD SA (2)

Additional KEs are performed in a series of INFORMATIONAL
exchanges followed CREATE_CHILD SA exchange

New Notification ADDITIONAL _KEY_ EXCHANGE is used to

link these exchanges, because they can be interleaved with
another IKE exchanges

QSKEs are negotiated in the same manner as in IKE_SA _INIT

New SA is created only when the last of INFORMATIONAL
exchanges is complete

Using QSKE in CREATE CHILD SA (3)

 Example:

Initiator

Responder

HDR (CREATE_CHILD SA), SK {SA, Ni, KEi} -->

HDR (INFORMATIONAL), SK {Ni2, KEi2,

N (ADDITIONAL KEY EXCHANGE) (linkl)} -->

HDR (INFORMATIONAL) , SK {Ni3, KEi3,

N (ADDITIONAL KEY EXCHANGE) (link2)} -->

<__

HDR (CREATE CHILD SA),

<__

<__

SK {SA, Nr,

KEr,

N (ADDITIONAL KEY EXCHANGE) (linkl) }

HDR (INFORMATIONAL) ,

SK {Nr2,

KEr2,

N (ADDITIONAL KEY EXCHANGE) (link2) }

HDR (INFORMATIONAL) ,

SK {Nr3,

KEr3}

Next Steps

e Clarify collisions handling in CREATE_CHILD SA in
case of additional exchanges

* Clarify how keys are computed in
CREATE_CHILD SA with additional exchanges

 Update IANA Considerations: add request to
rename Diffie-Hellman Group Transform IDs to Key
Exchange Transform IDs

Thank you!

e Questions? Comments? Feedback?
* Requirements for QSKE methods?
* Document adoption?

