Transport Layer Security (TLS)
Authentication using ITS ETSI and IEEE Certificates

IETF-104/IPWAVE Group

 Télécom ParisTech & CISCO & OnBoard Security
 29th March 2019
Plan

1. Motivations & Objective
2. Use Cases
3. Extension Overview
4. TLS Extension
Motivations

- Motivation: New Certificate Format
 - C-ITS\(^1\) networks are highly mobile with a limited bandwidth.
 - In C-ITS systems, actors’ permissions are important and actors’ identity is often private.

- ETSI and IEEE created standards for size-optimized attribute certificates to secure data exchange in highly dynamic vehicular environments
- ETSI TS 103 097 is a profile of IEEE 1609.2

\(^1\)Cooperative Intelligent Transportation System
Objective

- Enable Client/Server authentication using C-ITS certificates
- Vehicles and roadside will be provisioned with C-ITS certificates
- Permission-based certificates are more suited for ad-hoc networks than identity-based certificates
Use cases and “customers”

- Vehicle reporting environmental data to a server (SAE J2945/3)
- Vehicle diagnostics (ISO 21177)
- Fleet management (ISO 21177)
- Electric vehicle charging (USDoE / VTTI)
- Connecting an RSU to a traffic signal controller (Connected Vehicle Pilot Deployments)

/* Managed by IANA */
enum {
 X509(0),
 RawPublicKey(2),
 1609Dot2(3),
 (255)
} CertificateType;

struct {
 select (certificate_type) {
 /* certificate type defined in this document. */
 case 1609Dot2:
 opaque cert_data<1..2^24-1>;
 /* RawPublicKey defined in RFC 7250 */
 case RawPublicKey:
 opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>;
 /* X.509 certificate defined in RFC 5246 */
 case X.509:
 opaque cert_data<1..2^24-1>;
 };

 Extension extensions<0..2^16-1>;
} CertificateEntry;
One new value referring the IEEE certificate is added to the client-certificate-type and the server-certificate-type as defined in RFC 8446.
In standard TLS, the CertificateVerify field is a "raw" signature.

C-ITS (IEEE 1609.2) certificates are closely associated with 1609.2 SignedData.

- Existing C-ITS security libraries output and input SignedData, not signature.

Therefore in this I-D, the CertificateVerify field is a 1609.2 SignedData.

- Maintain tight binding between C-ITS certificate and thing it’s signing.
- TLS implementation must use client_certificate_type, server_certificate_type to determine which process to use to sign and verify.
- Approach has been verified on and off TLS mailing list.
IETF history

- Presented draft to TLS WG and IPWAVE WG at IETF 103 (Bangkok, 2018)
- Applied for and received code point from IANA for TLS certificate type
 - 2018-11-08: “In accordance with instructions from the reviewers, we’ve added the following entry to the TLS Certificate Types registry: Value: 3 Extension Name: 1609Dot2 Recommended: N Reference: [draft-tls-certieee1609] https://www.iana.org/assignments/tls-extensiontype-values We’ll update the reference when the IESG notifies us that they’ve approved the document and when the RFC Editor notifies us that they’ve assigned an RFC number.”
C-ITS certificates:
- Will be widely used in the near future
- Have size advantages
- As attribute certificates, are more suited to ad-hoc M2M environments than other authentication methods

Significant industry demand for support for C-ITS certificates in TLS
- IETF/IANA has assigned code point for certificate type, but customers need a stable draft
- Request that IPWAVE considers adopting the draft
Thank You!