Urban Air Mobility Implications for Intelligent Transportation Systems

IETF 104 – ipwave Working Group
Fred L. Templin
The Boeing Company
fred.l.Templin@boeing.com
Urban Air Mobility

• Urban Air Mobility concerns the introduction of manned and unmanned aircraft within urban environments

• NASA has initiated an “Urban Air Mobility Grand Challenge” and seeks industry participation: https://www.nasa.gov/uamgc

• We anticipate future introduction of low-altitude aircraft within urban environments operating in harmony with ground transportation
Autonomy and Communications

• As for Intelligent Transportation Systems, the key enablers for Urban Air Mobility are Autonomy and Communications

• Fine balance between advancement of autonomy and public safety and acceptance - industry and regulators must work together

• Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications become more important as Personal Air Vehicles and Unmanned Air Systems enter the urban landscape

• The urban mobility landscape will evolve from a 2D to a 3D coordinated environment with safety as the first priority
Common Situation Awareness

• Personal air vehicles will employ vertical takeoff and landing (VTOL) and operate at low altitudes
• De-conflicting both terrestrial and airborne congestion becomes a 3D consideration
• Urban air vehicles should employ V2V / V2I communications using wireless networking gear such as DSRC, C-V2X, etc.
Emphasis on Safety

• Public safety and confidence are the first priority
• Autonomy in the urban environment is a certainty - but how we get there safely is the challenge for industry and regulators
• Plan now for the future urban mobility landscape:
 • Scaling in terms of numbers of vehicles in three dimensions
 • Scaling in terms of communications, navigation and surveillance capabilities
 • Safe separations and situation awareness for all autonomous vehicle classes