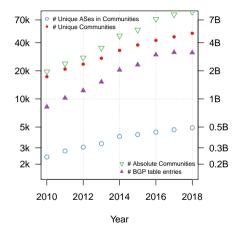
Weaponizing BGP Communities: Yet another attack on routing?

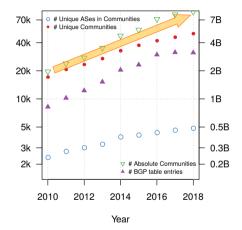
"BGP Communities: Even more Worms in the Routing Can", ACM IMC 2018

Florian Streibelt¹ <fstreibelt@mpi-inf.mpg.de>, Franziska Lichtblau¹, Robert Beverly², Cristel Pelsser³, Georgios Smaragdakis⁴, Randy Bush⁵, Anja Feldmann¹ IETF104, Prague, March 2019

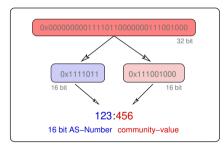

¹ Max Planck Institute for Informatics (MPII), ² Naval Postgraduate School (NPS), ³ University of Strasbourg, ⁴ TU Berlin (TUB), ⁵ Internet Initiative Japan (IIJ)

Weaponizing BGP Using Communities

Florian Streibelt, Franziska Lichtblau, Robert Beverly, Cristel Pelsser, Georgios Smaragdakis, Randy Bush, Anja Feldmann


Introduction

BGP Community usage is increasing



Increasing usage warrants a closer look.

BGP Community usage is increasing

Increasing usage warrants a closer look.

- RFC 1997: Optional Attribute in BGP message (32 bit)
- By convention written ASN:VALUE
- ASN can be both sender or intended 'recipient'
- It's up to the peers to agree upon 'values' used
- Every network decides on the semantics of values

- Defined by RFC 8092 (usage recommendations in RFC 8195)
- Now a 12 byte attribute
- Enable networks with 4-byte ASNs to use communities
- The first 4 byte contain the ASN of the "global administrator"

BGP Large Communities

JAKE-CLARK.TUMBLR

BGP Large Communities

Sorry...as we only found a very small number of occurrences¹ we could not conduct any meaningful measurements, yet.

¹283 individual large communities by 51 global administrators over the whole month of April 2018 at all available route collectors at RIPE/RIS, Routeviews, Isolario and PCH

BGP Large Communities

Update: The number of global administrators is increasing¹ In Feb./March 2019 we see more than 120 global administrators...

see https://labs.ripe.net/Members/emileaben/bgp-large-communities-uptake-an-update

Informational Communities (Passive Semantics)

- Location tagging
- RTT tagging

Action Communities (Active Semantics)

- Remote triggered blackholing
- Path prepending
- Local pref/MED
- Selective announcements

Without documentation, you can not tell if a community is active or passive!

Given the **increasing popularity** of BGP communities and the ability to **trigger actions** as well as **relay information**, the first question that comes to the mind of an Internet measurement researcher is...

What This Talk Is About

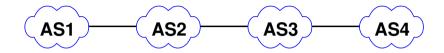
What could possibly go wrong?

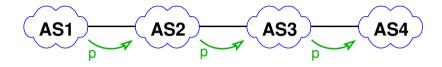
Propagation behavior

- RFC 1997: Communities as a transitive optional attribute
- RFC 7454: Scrub own, forward foreign communities
- 14% of transit providers propagate received communities (2.2k of 15.5k)
- Ratio seems small, but AS graph is highly connected

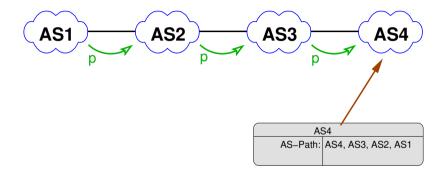
Still many people do not expect communities to propagate that widely.

- Propagated communities might trigger actions multiple AS-hops away
- No way of knowing if intended or not, e.g., for traffic management
- But are there also unintended consequences?

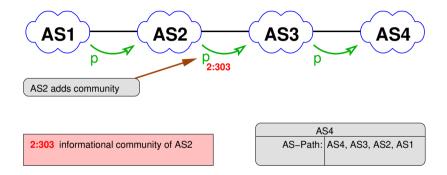

Our assessment is that there is a high risk for attacks!

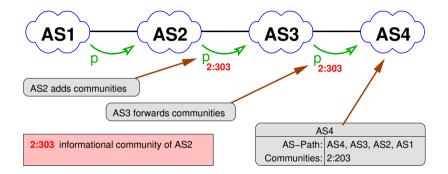

Observations

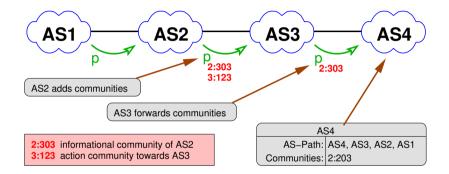
BGP updates and table dumps of April 2018 from publicly available BGP Collector Projects: RIPE RIS, Routeviews, Isolario, PCH.

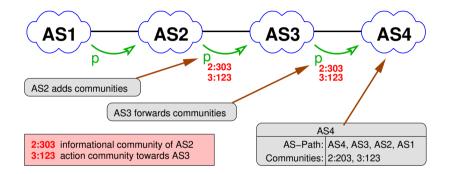

BGP messages	38.98 bn
IPv4 prefixes	967,499
IPv6 prefixes	84,953
Collectors	194
AS peers	2,133
Communities	63,797

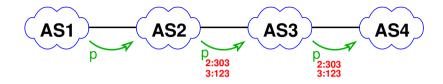
More than 75% of BGP announcements have at least one BGP community set, 5,659 ASes are using communities.

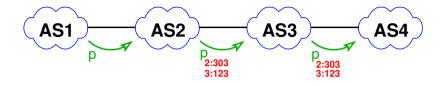



• AS1 announces prefix p

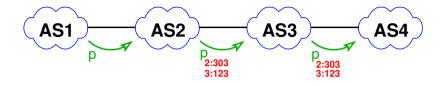

• AS1 announces prefix p, AS4 receives announcement


- AS1 announces prefix p, AS4 receives announcement
- Informational community 2:303 is added by AS2

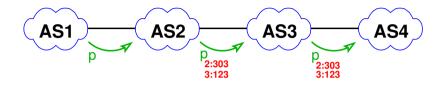

- AS1 announces prefix p, AS4 receives announcement
- Informational community 2:303 is added by AS2


- AS1 announces prefix p, AS4 receives announcement
- Informational community 2:303 is added by AS2
- AS2 also adds action community 3:123 for AS3

- AS1 announces prefix p, AS4 receives announcement
- Informational community 2:303 is added by AS2
- AS2 also adds action community 3:123 for AS3
- Both communities are forwarded by AS3 to AS4



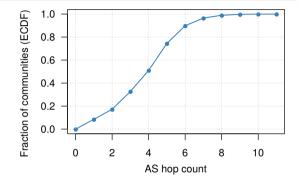
A	54
AS-Path:	AS4, AS3, AS2, AS1
Communities:	2:203, 3:123

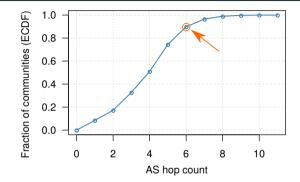

A	54
AS-Path:	AS4, AS3, AS2, AS1
Communities:	2:203, 3:123

• We can only infer which AS added a specific community

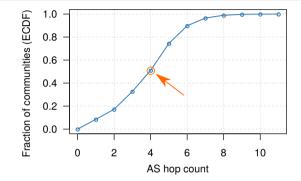
A	54
AS-Path:	AS4, AS3, AS2, AS1
Communities:	2:203, 3:123

- We can only infer which AS added a specific community
- We assume that a community *n:value* was added by AS n

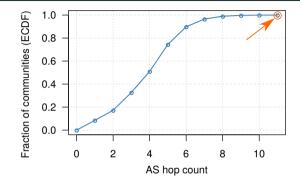



inferred travel-distance is a lower bound!

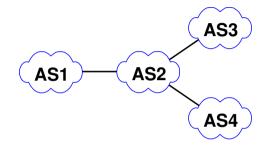
2:303 traversed at least two AS–links3:123 traversed at least one AS–link


AS	54
AS-Path:	AS4, AS3, AS2, AS1
Communities:	2:203, 3:123

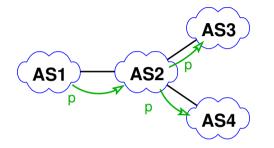
- We can only infer which AS added a specific community
- We assume that a community *n:value* was added by AS n
- This gives a lower bound for the 'travel distance'
- In above example we calculate AS-hop-count 1 for 3:123



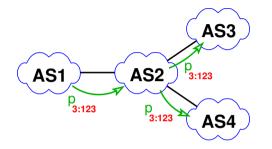
• 10% of communities have an AS hop count of more than six

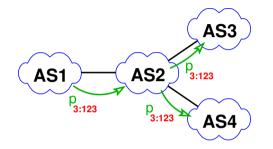


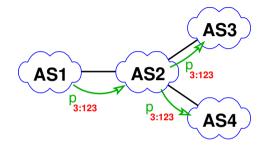
- 10% of communities have an AS hop count of more than six
- More than 50% of communities traverse more than four ASes

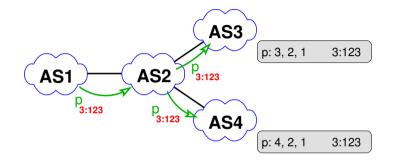


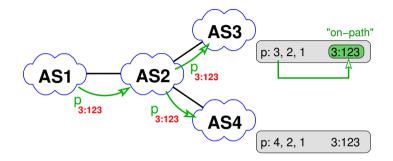
- 10% of communities have an AS hop count of more than six
- $\bullet\,$ More than 50% of communities traverse more than four ASes
- Longest community propagation observed: 11 AS hops

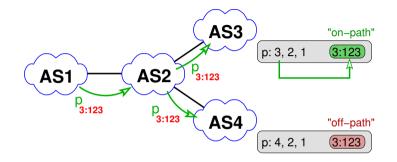

BGP Community Propagation Behavior


BGP Community Propagation Behavior


• AS1 announces prefix p

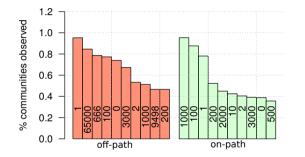

• AS1 announces prefix p, tagged with 3:123


- AS1 announces prefix p, tagged with 3:123
- Community is intended for signaling towards AS3


- AS1 announces prefix p, tagged with 3:123
- Community is intended for signaling towards AS3
- AS4 also receives this announcement

- AS1 announces prefix p, tagged with 3:123
- Community is intended for signaling towards AS3
- AS4 also receives this announcement

- AS1 announces prefix p, tagged with 3:123
- Community is intended for signaling towards AS3
- AS4 also receives this announcement



- AS1 announces prefix p, tagged with 3:123
- Community is intended for signaling towards AS3
- AS4 also receives this announcement

Off-path:

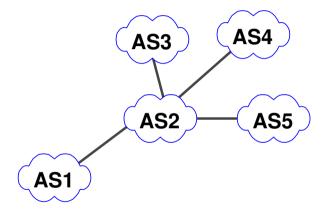
ASN from community is not on the observed AS-path at AS4.

On-path versus off-path

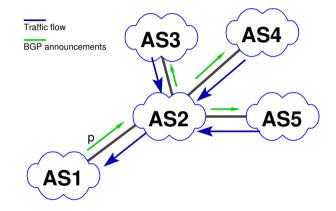
- Blackholing communities (e.g., :666) 'leaking' off path
- But AS implementing RTBH SHOULD add NO_ADVERTISE or NO_EXPORT (RFC7999)

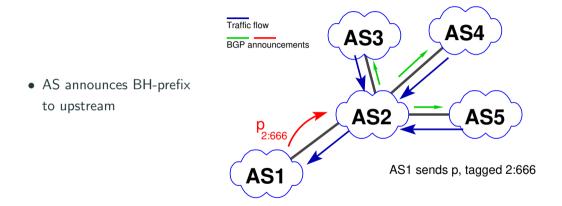
Suggests ASes not implementing RTBH do not filter.

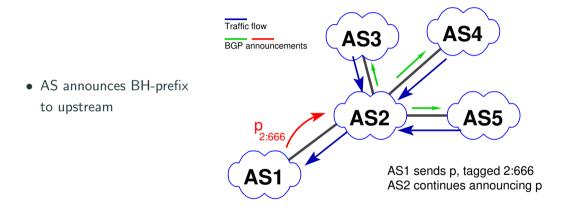
Experiments

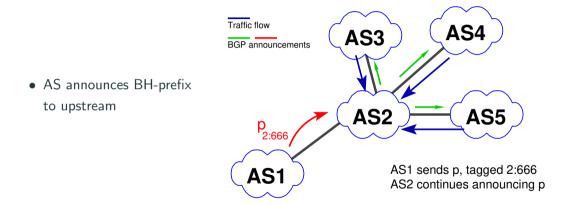

- Experiments conducted in a lab environment²
- Validated on the Internet

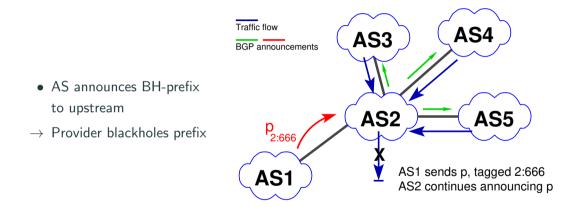
Scenarios

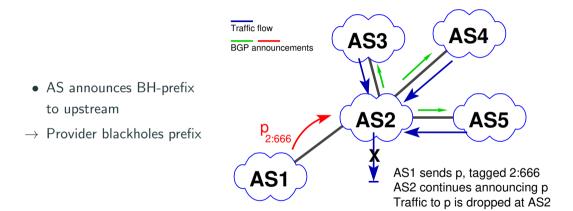

- Remote Triggered Blackholing (RTBH)
- Traffic redirection attack

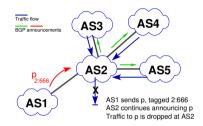

...more in the paper.

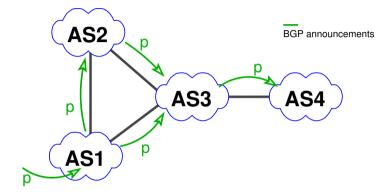

²Configurations available at: https://www.cmand.org/caas/

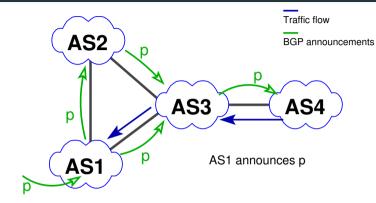


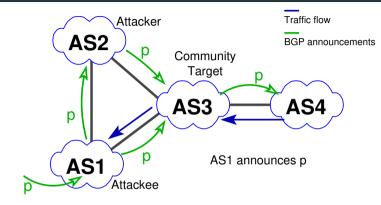


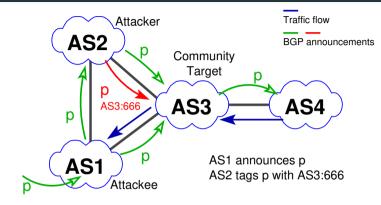


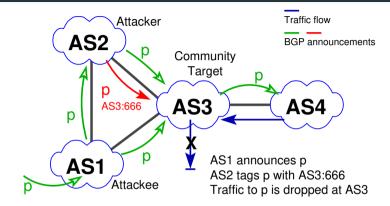


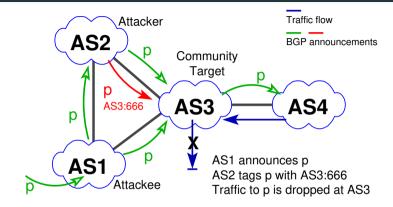


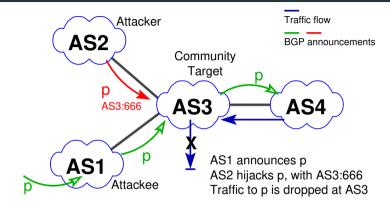

- AS announces BH-prefix to upstream
- \rightarrow Provider blackholes prefix




Safeguards


- Provider should check customer prefix before accepting RTBH
- Customer may only blackhole own prefixes
- Different policies for Customers/Peers
- On receiving RTBH, add NO_ADVERTISE or NO_EXPORT (RFC7999)

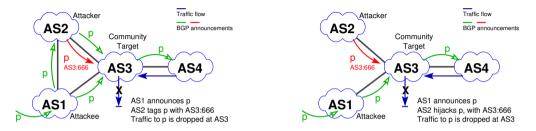




- AS on 'backup' path adds RTBH-community
- Provider blackholes prefix
- Not only traffic traversing AS2 is dropped

RTBH: how it should not work (with hijack)

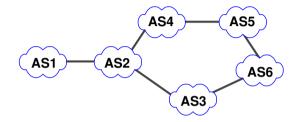
- Hijacker announces RTBH
- Prefix filters circumvented due to misconfiguration
- Provider blackholes prefix

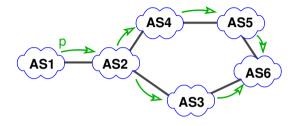

Attack confirmed to work on the Internet, works multi hop and is hard to spot

Triggering RTBH is possible for attackers because, e.g.,:

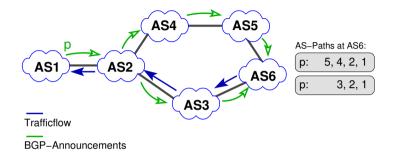
- BH prefix is more specific, accepted via exception
- Providers check BH community before prefix filters³
- NO_ADVERTISE or NO_EXPORT often is ignored / not set
- Problem: No validation for origin of community

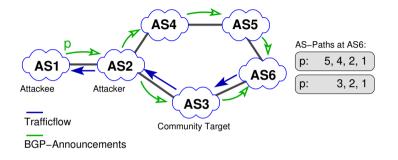
³we found configuration guides with that bug

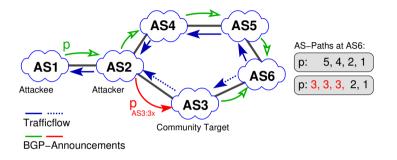

RTBH: Attack Mitigation

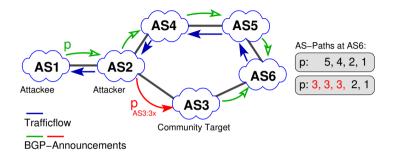


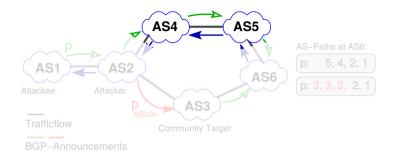
Mitigation


- RTBH Provider should check for best path
- Accept Blackholing announcement only if that peer is currently on the best path

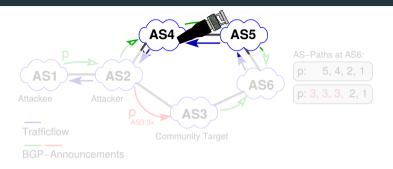

Checkout talk at IEPG by Job Snijders yesterday!




BGP–Announcements



• Attacker AS2 uses community to add path-prepending in AS3


- Attacker AS2 uses community to add path-prepending in AS3
- AS6 routes traffic towards prefix p via AS5, AS4

- Attacker AS2 uses community to add path-prepending in AS3
- AS6 routes traffic towards prefix p via AS5, AS4

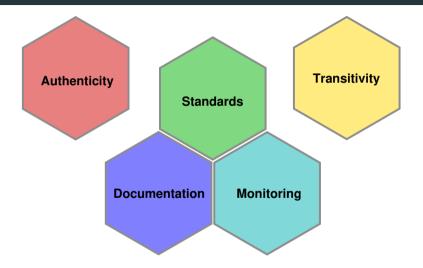
- Attacker AS2 uses community to add path-prepending in AS3
- AS6 routes traffic towards prefix p via AS5, AS4
 - Network tap?

- Attacker AS2 uses community to add path-prepending in AS3
- AS6 routes traffic towards prefix p via AS5, AS4
 - Network tap?
 - Slow/Congested link?

• ...

Attack on 10 July 2018

"For about 30 minutes, these hijack prefixes weren't propagated very far. Then they were announced again at 23:37:47 UTC for about 15 minutes but to a larger set of peers — 48 peers instead of 3 peers in the previous hour. It appears a change of BGP communities from 24218:1120 to 24218:1 increased the route propagation."


Source: https://dyn.com/blog/bgp-dns-hijacks-target-payment-systems/

Discussion

Discussion

Discussion

Discussion: Authenticity

- Communities can be modified, added, removed by every AS
- No attribution is possible
- No cryptographic protection (RPKI does not help)
- Still operators rely on their 'correctness'
- Large communities partially improve the situation

How can we achieve authenticity, or at least attribution?

Discussion: Transitivity

- Communities can help in debugging
- Easy, low overhead communication channel
- Widely in use, but often only 1-2 hops
- But: High risk of being abused!

Are fully transitive communities still worth the clear risk?

Discussion: Monitoring

- There is no global state in BGP
- Route collectors only see the 'end-result'
- Inferring modifications between origin-AS and collector: almost impossible
- The meaning of a particular community can not be known
- No universal way for attribution of changes

Monitoring communities to detect abuse is extremely difficult.

Discussion: Standards

- Notation of "ASN:value" is just convention
- No defined semantics: values can mean anything
- Used both for signaling and triggering of actions
- There are limited standardized communities
- Many ASes do not implement these

Standards

Standardization is necessary.

Discussion: Documentation

- Communities are individually defined by the ASes
- Documentation, if available, is scattered over whois, websites, customer-portals, ...
- Not in machine-readable format, often natural language
- Automated parsing can work for limited scope/fixed applications
- Parsing for general purpose applications is not feasible

Documentation is limited and fragmented.

Discussion: Standards in Documentation

- DTAG internally developed a system for "community structuring"
- Translates string representation to communities (short + large)
- Example: tag.origin.country.DE
- Allows definition of parameters to communities
- Documents communities and parameters
- Working code, used in production
- System is documented in an Internet-Draft style document

Is this a way for standardizing documentation?

- AS should filter incoming Informational Communities carrying their ASN
- Agreements with Downstreams might be needed, e.g., to filter Action Communities
- Publicly documenting Communities used is key to enable other AS to filter
- Monitoring/Logging received communities for tracking abuse
- Providing public looking glasses, showing communties, helps debugging

- BGP communities are the only feasible way to realize signaling between ASes
- Secure usage requires good operational knowledge and diligence
- Overcomplex security mechanisms around their short comings are not the solution

- BGP communities are the only feasible way to realize signaling between ASes
- Secure usage requires good operational knowledge and diligence
- Overcomplex security mechanisms around their short comings are not the solution
- While people in this room probably know what they are doing: Based on experience we should not rely on that globally...

Do we need less fragile protocols and mechanisms?

Summary

- Communities are widely in use
- Used to realize policies

But:

- Heavily relies on mutual trust between peers:
- No authenticity/security in place
- Attribution is impossible
- Hard to detect attacks
- While our prefix hijacks were reported, no one reported our community attacks

It's unknown if there are other unnoticed attacks.

BGP Communities: Even more Worms in the Routing Can

Get the preprint version at:

https://people.mpi-inf.mpg.de/~fstreibelt/preprint/communities-imc2018.pdf
Published at ACM IMC 2018
https://conferences.sigcomm.org/imc/2018/

Contact:

Florian Streibelt <fstreibelt@mpi-inf.mpg.de>

Images:

Unicorn illustrations: Telegram stickers by Darya Ogneva: https://tlgrm.eu/stickers/BornToBeAUnicorn

The Spanish Inquisition: by Miki Montllo

http:

 $//{\tt miquelmontllo.blogspot.com/2013/10/the-spanish-inquisition-wallpaper.html}$