Submission Title: [802.15.4 Profile for IETF SCHC]
Date Submitted: [14 March 2019]
Source: [Charlie Perkins] Company [Futurewei]
Address [2330 Central Expressway, Santa Clara Ca, USA]
Voice:[+1.408-330-4586]
E-Mail:[charlie.perkins@huawei.com]

Re: [SC IETF topic for SCHC header compression]

Abstract: [Discussion about ways to use SCHC with 802.15.4]

Purpose: [Develop document text for IETF [lpwan] submission]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Activities in some relevant groups

• 802.15.4w sent out for Letter Ballot
• 802.15.4x approved by IEEE-SA
• 802.15.10a approved by IEEE-SA
• Coexistence concerns between 802.11ah and 802.15.4g
• Progress in 802.15.12 – API definitions
 ➢ Next: internal module structure / interfaces
SCHC – Static Context Header Compression

- Static Context:
 - Topology
 - Application (i.e., kind of traffic)
 - Packets always delivered in order

- Fragmentation modes
 - Never Ack
 - Always Ack
 - Ack on Error
Minimal SCHC Fragment Header sizes

- RuleID: two or three bits minimum
- Dtag: can be zero
- W: at least one bit if windows are used
- FCN: probably at least two bits
 Let’s say one byte.

Plus, MIC
Comparing Fragmentation

- For SCHC, fragmentation overhead is:
 - ~1 byte / fragment
 - plus SCHC MIC
 - Request SC IETF to recommend Profile setting MIC=0, since 802.15.4 *will* check
 - plus 802.15.4 header per fragment (5-7 bytes)
 - How much can we compress MHR?
Goal 1: Optional SCHC MIC

- No need to have FCS and MIC on every reassembled frame, may well be identical
- SC IETF agreed it would be proper to request MIC = 0
Frame Composition

<table>
<thead>
<tr>
<th>Octets: 2</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>0</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>0</th>
<th>Variable</th>
<th>Max Frame Size-?all other fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Sequence Number</td>
<td>Addressing Fields</td>
<td>Security Header (optional)</td>
<td>Auxiliary Security Header (optional)</td>
<td>Header IEs</td>
<td>Payload IEs</td>
<td>Data Payload</td>
<td>MIC</td>
<td>FCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dest PAN ID</td>
<td>Dest Addr</td>
<td>Source PAN ID</td>
<td>Source Addr</td>
<td>Security Control</td>
<td>Frame Counter</td>
<td>Key Identifier</td>
<td>0/1/59</td>
<td>Variable</td>
<td>Variable</td>
<td>0/4/8/16</td>
<td>2/4</td>
</tr>
</tbody>
</table>

2 | 1 | 2 | 2 | 0 | 2 | 1 | 4 | 1 | 0 | Variable | Max Frame Size-?all other fields |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Sequence Number</td>
<td>Addressing Fields</td>
<td>Security Header (optional)</td>
<td>Auxiliary Security Header (optional)</td>
<td>Header IEs</td>
<td>Payload IEs</td>
<td>Data Payload</td>
<td>MIC</td>
<td>FCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dest PAN ID</td>
<td>Dest Addr</td>
<td>Source PAN ID</td>
<td>Source Addr</td>
<td>Security Control</td>
<td>Frame Counter</td>
<td>Key Identifier</td>
<td>0/1/59</td>
<td>Variable</td>
<td>Variable</td>
<td>0/4/8/16</td>
<td>2/4</td>
</tr>
</tbody>
</table>

MHR | MAC Payload | MFR
802.15.4 Fragmentation overhead

- 802.15.4 only defines for LECIM
- FCSD IE required prior to fragments (4)
- Fragment acknowledge – Table 23-4
- Fragment header (2)
- FICS on every fragment – (2) or (4)
Minimal 802.15.4 frame format

- General frame format defined in 7.2
- 3 bits for Frame type
- 0 bits for PAN IDs, Source/Dst Address
- 0 bits for IEs
- 2/4 bytes for FCS
Frame type values

<table>
<thead>
<tr>
<th>Frame type value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ b₁ b₀</td>
<td></td>
</tr>
<tr>
<td>'000</td>
<td>Beacon</td>
</tr>
<tr>
<td>'001</td>
<td>Data</td>
</tr>
<tr>
<td>'010</td>
<td>Acknowledgment</td>
</tr>
<tr>
<td>'011</td>
<td>MAC command</td>
</tr>
<tr>
<td>'100</td>
<td>Reserved</td>
</tr>
<tr>
<td>'101</td>
<td>Multipurpose</td>
</tr>
<tr>
<td>'110</td>
<td>Fragment or Frak</td>
</tr>
<tr>
<td>'111</td>
<td>Extended</td>
</tr>
</tbody>
</table>

The Fragment and Frak formats are defined in 23.3.3 and 23.3.6.2, respectively.
Possibility for a new Frame Type

- Frame type 0b'100' is “Reserved”
- Frame type 0b'111' is “Extended”
- Frame type 0b'110' is “Interesting”

If a new frame type is possible, the next bits could be the SCHC header

- RuleID, DTAG, W, …
Questions

• How to minimize 802.15.4 MAC header overhead?
• Should the document be only for 15.4w?
• Should we consider specifying an extended frame type?
• Does SCHC require security? How shall we compare 802.15.4 security versus SCHC security?
Observations

- 802.15.4 MIC is cryptographically secure and typically is done on-chip
- SCHC MIC is a CRC checksum and not secure. Should call it FCS, not MIC