Hierarchical IS-IS
More levels, please

- At scale, what happens to IS-IS network architecture?
 - A pod in a data center becomes an L1 area.
 - The entire data center becomes an L2 area.
 - Now we need Level 3 for the WAN. How?
Levels 3 thru 8

- IS-IS encoding already reserves bits for more levels

- Circuit type (ISO 10589, section 9.5):
 - 1 - Level 1
 - 2 - Level 2
 - 3 - Level 1 & 2
 - 6 reserved bits
New bits

- Bit values:
 - 4 - Level 3
 - 8 - Level 4
 - 16 - Level 5
 - 32 - Level 6
 - 64 - Level 7
 - 128 - Level 8

- Set bits MUST be contiguous
New LAN Hello PDU

- **Existing:**
 - LAN L1 IIH PDU
 - LAN L2 IIH PDU

- **Add:**
 - LAN HELLO PDU (same format, just separate for backward compatibility)
 - Covers L3 - L8
 - If only some levels are supported, this applies only to the common levels.
New LSPs

- Existing:
 - L1 LSP
 - L2 LSP

- Add
 - L3 LSP, L4 LSP, ..., L8 LSP

- Inherits everything from L2, translated to the target level
New CSNP, PSNP

- Existing: L1 CSNP, L2 CSNP, L1 PSNP, L2 PSNP
- Add:
 - L3 CSNP, L4 CSNP, ..., L8 CSNP
 - L3 PSNP, L4 PSNP, ..., L8 PSNP
• Enable level 3 through 8 for IS-IS.

• Each level multiplies overall scale, so this gives extreme scalability (10^{24}) for little effort.

• Request WG adoption.
Area Abstraction
An IS-IS network
An IS-IS network
An IS-IS network
1. Send out level 2 hello packets (IIHs). Same system ID on all level 2 interfaces. We’ll need a special system ID for this.

2. Participate in level 2 flooding.

3. Generate a level 2 link state PDU with all of the level 2 adjacencies. Nothing else is advertised into level 2.

4. Forward level 2 transit traffic.
Area Proxy System ID TLV

- Area Leader advertises a System ID to be used as a proxy for entire area.

- Proxy ID used by edge level 2 systems to generate level 2 hellos, using the Proxy ID as the source.
L2 Flooding

- Need to provide L2 flooding across the L1 area.

- Tunnel from L1L2 edge routers back to Area Leader. Run L2 on top of the tunnel. This creates the L2 flooding topology.
L2 Proxy LSP

- Area Leader generates L2 Proxy LSP.
- Examines L2 LSDB for external neighbors. These were advertised as adjacencies by the L1L2 edge routers.
- External adjacencies are then advertised as neighbors to the proxy (e.g. A, B, C, …, H).
- All other L2 LSPs from the area itself are NOT flooded outside of the area.
- All other normal area ‘leaking’ happens into the proxy LSP.
L2 Forwarding

• Traffic arrives at L1L2 edge router.

• Transit traffic would match an L2 prefix.

• As part of the L2 SPF computation, the entry edge router uses the area exit router as a next hop and tunnels (SR, RSVP-TE, GRE) the traffic to the exit.

• L2 SPF can only use intra-area metrics as an inter-area tiebreaker.
Summary
Relation to Topology-Transparent Zones

- Prior (independent) work: draft-chen-isis-ttz-05
- Similar goals
Primary differences

- Zone boundaries don’t coincide with area boundaries.
- All zone edge routers add an LSP to the L2 LSDB.
 - Each LSP has links to all other zone edge routers.
- Smooth migration mechanism for zones
- Combine drafts?