Neighbor Mgmt Policy

Performance Report

- **Rahul**, Rabi, Simon, Joakim IETF104, Prague

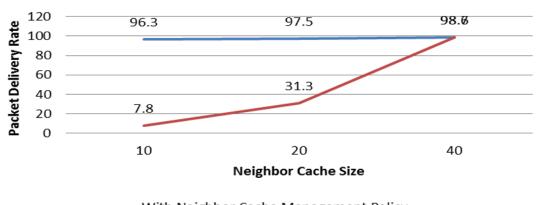
Updates

- Text to highlight use of min-priority field in neighbor mgmt
 - Referenced Michael's enrollment draft
 - draft-richardson-6tisch-roll-enrollment-priority
- Clarifications on route cleanup and impact on neighbor cache
- Performance result added

Performance test config

- Network stack
 - LWIP integrated with RPL
 - LWIP added with neighbor mgmt policy module
- Test tool
 - Whitefield-framework
 - With NS3 backend for wireless simulation
 - 64 nodes network, 8x8 grid, 80x80 sq. mtr
 - 802.15.4 in 2.4GHz, Unslotted CSMA with single channel
 - Data transmission
 - UDP data sent by each node at 10s interval to BR
 - BR echoes the packet

What to measure?


- Packet Delivery Rate
 - How does neighbor management policy impact PDR?
- Network convergence time
 - How to define network convergence time in this context?

Results

- PDR
 - >95% PDR achieved even with extremely constrained nbr-table
- Network convergence time

Nbr cache size	Without NBR-mgmt	With NBR-mgmt
10	No-convergence	94sec
20	No-convergence	51sec
40	24sec	25sec

Impact On PDR

With Neighbor Cache Management PolicyWithout Neighbor Cache Management Policy

Observations

- RPL Control overhead with neighbor management was high
 - Because of proactive maintenance
 - Convergence time and control overhead is high with lower nbr cache size
- Without neighbor management
 - The BR could get all the routes but neighbor table size was not enough
 - Most of the UDP traffic was dropped at BR or en-route because of next-hop unavailability in neighbor table

Next?

• We believe the document is ready for LC