
Generic Path-Manager Support
with eBPF

Viet-Hoang Tran, Olivier Bonaventure
(INL, UCLouvain)

Path Manager
Which path to create/remove? Which address to announce?

→ Should be controlled by applications / users

2

?

?

Slide from Netdev0x12.
 Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Supporting user-defined Path Managers (PM)
Netlink-based PM framework

+ Available in mptcp-trunk branch (out-of-tree)

+ Control plane in uspace

+ Clean layering

Issues:

‐ Under high load, netlink messages may be lost

‐ Need separated facilities to support:
- set/getsockopt (e.g. access subflow-level info)
- TCP state change notification
- policy to refuse the establishment of a subflow

What about eBPF-based approach
+ Performance

+ Built-in support for TCP state tracking

+ Easy to apply custom policy on subflow establishment

- Restricted by current eBPF limits

- Less layering separation?

- BPF program can be called from different contexts → Locking is trickier

Our prototype
To track events:

To store local/remote addresses and subflows:

To open a subflow:

New TCP-BPF callbacks

BPF maps

new helper function

 Based on TCP-BPF (in mainstream Linux) by Lawrence Brakmo:
● Hooks at different phases of a TCP connection

 or when connection state changes
● Read & write to many fields of tcp_sock

Code status
Kernel changes: ~300 LoCs

Examples: Two minimal PMs were implemented as BPF programs:

ndiffports PM: ~20 LoCs

fullmesh PM: ~200 LoCs

Open issues
Handle events of local IP address changed:
Need to send events to each BPF program in each cgroup

Remove subflows: (already done automatically in kernel when
receiving a REMOVE_ADDR option)

Store the subflows? or query on-demand?

Dual-stack support: would be similar to bpf_bind()

Multiple PMs? e.g. each PM per netns

Conclusion

eBPF makes it easier to extend Linux MPTCP - with good performance

More details in our Netdev 0x13 paper (Section 4):
“Making the Linux TCP stack more extensible with eBPF”

Git repository: https://github.com/hoang-tranviet/tcp-options-bpf,
 on branch bpf-pm-v2.2-netdev

https://www.info.ucl.ac.be/~tranviet/tcp-ebpf.pdf
https://github.com/hoang-tranviet/tcp-options-bpf

Backup slides

● MPTCP Session created

● MPTCP Session established

● MPTCP Session closed (e.g. fallback to regular TCP)

● Subflow established

● Subflow closed

● Remote IP address added/removed

New TCP-BPF callbacks to track events
No more than 3 arguments

Extend TCP-BPF context
Extend struct bpf_sock_ops with mirrored fields from struct sock:

mptcp_loc_token

mptcp_rem_token

mptcp_loc_key

mptcp_rem_key

mptcp_flags

Open subflows
via helper function: mptcp_open_subflow()

● (bpf_sock, srcIP+port, dstIP+port) as input

● if a field of tuple is unset: use existing or kernel-assigned IP/port

● extract meta_sk and other mptcp info from bpf_sock

But usually, we are in softirq context: cannot open subflow directly

→ Schedule into workqueue instead

→ subflow is actually opened later

