Multi-path Transport Deployment on Smartphone Apps

Presented by Zhen Cao
Joint work of the Huawei Protocol Research Lab and Consumer Software Team

IETF 104 MPTCP, March 2019
Agenda

• What’s been done ;
• Lessons we learned ;
• Issues we found ;
• Some thinking about future work;
In a nutshell

• **What we have done:**
 – Deployment of MPTCP on Honor V20 (View 20), one of the flagship product of Huawei Honor brand since Jan 2019;
 – Up to now, ~seven applications have been enabled (more are coming), making it happen with the direct collaboration of third-party applications & Cloud/CDN provider;
 – Users can turn it on/off through an UI named ‘network acceleration’;
 – In addition to MPTCP, we also support UDP multipath through user-space networking [MPUDP], to complement the scenarios where applications only use UDP flows;
 – Operated only in China now, and still working on to bring it elsewhere.
Current Deployment status

• Use cases
 – Video downloading: for higher speed video downloading coupling WiFi and LTE together;
 – Mobile Live Video: for better experience under weak/broken WiFi links;
 – Mobile online games: for low latency interactions and seamless handover between WiFi and LTE;

• User experience improvement:
 – Video downloading rate has been effectively accelerated in general;
 – Live video experience improvement when some path has been deteriorated;
 – Lower latency gaming experience when any path being congested;
 – Still has some counter-productive cases where improvement is not visible;
 – Keep collecting user feedback;
MPTCP deployment use cases

1. Direct E2E MPTCP Conversation
 - SDK to glue Android APP to MPTCP
 - App cloud infrastructure updated to MPTCP

2. Proxied MPTCP Conversation
 - Proxied via CDN(wangsu) or Cloud Provider(Huawei Cloud)
 - Minimal changes on the APP cloud infrastructure
Lessons we have learned: deploying MPTCP could be easier

• Blocking issues:
 – Simultaneous use of multiple links without user permission is highly discouraged;
 – Middlebox issues: unsuccessful MPTCP connection establishment & OAM issues;
 – Mobile applications: want to see visible user experience improvement, as the impact on the infrastructure/business operation is huge;

• Ways taken:
 – A specific UI for user opt-in is a MUST to shift the choice to users;
 – Notifications of data over use, and overall, the data plan keeps becoming cheaper;
 – Some ports has been taken special care/quickly failover to a regular TCP connection in many weird cases;
 – Close collaboration with the application vendors, turning on MPTCP on a small set of use cases first of all, and trying to expand to other scenarios;
 – Performance is very important, as users expect much more if two links are turn on simultaneously;
Priority aware scheduling

Current issue:
• the cloud side does not know which path is toll-free
• by using the default scheduler of minRTT, more data will be scheduled to the metered link if it is quicker;

Challenges:
• No way to mark the fine-grained priority of the flows;
• The client does not have fine grained control of the scheduler used at the server;

Possible ways: [based on the mailing-list discussion]
• Fine-grained control of the policies ;
Aggregation performance

Use expectation: when using multiple paths, users usually expect that the performance being better than any single path;

The problem: if the quality of two links largely departs from each other, the aggregated transmission is less efficient than the best available path alone;

It’s been difficult:
• Faster path is not fully utilized, and needs to wait for the slower one to accomplish before being filled with more data;
• Sending on the lousy link sacrifices the time of sending it over the faster one;
• Many academic work around this issue;

Suggestion: documenting the problem and possibly some scheduler to avoid performance degradation [draft-zuo-mptcp-degradation-00]
Low latency multi-path transport

Issue:
• For mice flow, MPTCP cannot acquire the RTT of the unused flow (not data overflowing to the other subflow)
• How can it be switched between the two links, as there is no active latency probe mechanisms at MPTCP layer;

Discussion:
• Active probing of the latency via a special frame;
• Make-before-break by bridging to redundant mode;

Recommended way of doing this will be greatly expected.
Problem: subflows established between IP addresses of different ISPs will result into longer delay and path discrepancy.

Gap: existing MPTCP path managers do not support such features yet.
Robust and optimal connection establishment

Motivation:
• If the initial path is broken, the connection cannot be establishment
• If the initial path is lousy, the initial data exchange will be poorly performed, which has obvious impact on the user experience

Solutions:
• Three alternatives have been discussed in [1];
• Need to coupled with initial path selection modular;

Discussion:
• Document such practice, could be experimental;
• Overcome the server burden issue by software engineering approaches outside IETF;

Load balancing of Multipath flows

- It’s a well-known issue, i.e., how to map two subflows with different source IP to the same server IP;
- Two possible ways:
 - Wait for a stateful mptcp LB;
 - Minor changes to the protocol, and there are some well-engineered solutions [2];
- Already in RFC6824-bis, it is useful to also mention that in the mptcp experience RFC document;
- Need to revisit if ROBE is turned on.

[2] ICNP’17, Making Multipath TCP friendlier to Load Balancers and Anycast
MPTCP in 5G

- SA2 Work Item: ATSSS (Access Traffic Steering, Switch and Splitting support in the 5G system architecture)
- Also considering bundling of UDP flows [3]

[3] MP-DCCP at IETF104 HotRFC session
To summarize

- Multiple path transport use cases on smartphone applications;
- Issues and clear gaps (addressing them can make it even easier):
 - Priority-aware scheduling;
 - Scheduler negotiation;
 - Robust connection establishment + Initial path selection;
 - Low latency MPTCP Path Magr and active probing;
 - Load balancing solutions for MPTCP;
- Looking ahead
 - 5G and Edge
Thank You