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Scope of this talk

• Provide a list of potential research directions in the field of AI/ML for 
Network Management 

• Answer this question:

Should the NMRG work on such topics? 
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Context: A draft of a canonical use-
case for Network Management
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Context: A draft of a canonical use-case
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Context: A draft of a canonical use-case
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• A network model is a digital twin of the 
network. This is a model already trained

• Built with AI/ML techniques
• Typically with Neural Networks

• Can answer questions regarding the 
network.
• What happens with the utilization of 

the network if a link fails?
• What will be the load of the network if 

a particular users doubles its capacity?
• What will be the resulting delay if I 

apply a particular routing 
configuration?

Digital Twin



Context: A draft of a canonical use-case
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• This module operates and manages the 
network

• Uses the Network Module for this
• Can be implemented with AI/ML 

techniques or traditional deterministic 
algorithms
• AI/ML  (deep) Reinforcement 

Learning
• Deterministic algorithms  Classical 

optimization, management algorithms

Management Module

Find optimal 
configuration
to achieve targeted 
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Context: A draft of a canonical use-case

• This is a management API

• Sets the goals of the network

• Can be implemented using an Intent 
Language or using traditional 
management APIs

• Fun fact: When Deep-Reinforcement 
Learning is used this “Target Policy” 
is easily expressed as a reward 
function.

• DRL is the compiler from Intent to 
Network Primitives

Target
Policy
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List of Topics

1. Feature Engineering and Embeddings

2. Accountability and Explainability

3. Datasets and Benchmarking

4. ML Architecture & Use-Cases

5. Distributed AI
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1.- Feature Engineering and Embeddings
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• Neural Networks require 
representing input and output 
parameters in meaningful ways

• This is called feature engineering

• This is the first thing you need 
when applying Neural Nets to any 
field

• How do you represent an IP 
address?

• It´s not a number since it has a 
structure
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1.- Feature Engineering and Embeddings

• How do you represent the topology or routing?
• It is actually a graph

• Existing graph embeddings are not useful
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1.- Feature Engineering and Embeddings
• Each application has developed their own NN architectures 

• Fully Connected = Units  Non-linear regression
• CNN = Grid elements  Images
• RNN = Sequences  Text processing, Time-Series
• GNN = Nodes +  Edges  Networks

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv 
preprint arXiv:1806.01261(2018).
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1.- Feature Engineering and Embeddings

• Graph Neural Networks are an 
architecture to learn graphs

• They may represent a fundamental 
tool for Network Machine Learning

• As Convolutional Neural Networks are a 
fundamental tool for Computer Vision

• RouteNet is able to learn and 
generalize networks

• Trained with one topology
• Perform accurate predictions over an 

unseen topology

RouteNet from [1]

[1] Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN
https://arxiv.org/pdf/1901.08113.pdf 12
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1.- Feature Engineering and Embeddings

Should the NMRG work on providing guidelines
or mechanisms to represent common network 
parameters? 
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2. Accountability and Explainability
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• AI algorithms are mostly a black-box
• AI algorithms operate in a probabilistic 

way
• Existing network algorithms are 

deterministic
• Disruptive and profound change

• How can we troubleshoot and provide 
performance and reliability guarantees?

Management Module
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2. Accountability and Explainability
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• Explainability  Techniques to “look inside 
the neural networks”, designers are able to 
explain why the NN reached a decision.

• Accountability  Complement the AI 
algorithm with mechanism monitoring and 
help guaranteeing certain operational 
bounds or limit the AI to remain in safe 
bounds, i.e. “human-compliant” 
configurations

Management Module

Find optimal 
configuration
to achieve targeted 
performance/cost

Accountability

Configuration



2. Accountability and Explainability

Should the NMRG work on providing guidelines, 
mechanisms and architectures to support accountability?

16



3. Datasets and Benchmarks

http://www.image-net.org/

ALEXNET

• ML needs data
• In well-established ML fields (Computer 

Vision) they have:
• Open Datasets (e.g., Imagenet)
• Well-established benchmarks (e.g., 

AlexNet)
• This helps

• Education
• Research
• Benchmarking (e.g, Imagenet 

challenge)
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3. Datasets and Benchmarks
• The networking community needs data-sets and benchmarks

• Some early attempts (KDN Dataset and Benchmark [1])
• Reference datasets 

• Many network dimensions
• Start by agreeing on one specific use-case?

• Cross-RG/WG activity (e.g, MAPRG, IPPM, OPS) to define 
measurements to create the data-sets

• Benchmarking methodology for ML algorithms applied to 
networking problems.

[1] https://github.com/knowledgedefinednetworking/
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3. Datasets and Benchmarks
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3. Datasets and Benchmarks

Should the NMRG work on providing guidelines and help
producing reference datasets and benchmarks? 

Potentially narrowing things down to one relevant 
use-case in a first phase
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4.- ML Architecture & Use-Cases
• Which is an abstract “network-friendly” ML reference architecture?

• Which are the right subsystems and the interfaces among them?

• There is previous work on identifying use-cases
• Are there common functionalities?
• Can they be used for validation of a reference architecture?

• ML metalanguage, do we need one for networking?

• ML Architecture to manage datasets generated by AI module vs. ML-augmented 
architecture for Traffic Engineering or Traffic Analysis

• AI(ML/DL/RL) algorithms have different structural approach  architectural impact, 
uniform use/operation of (diverse) AI systems, integration generalisation

• Towards AI based/assisted Network Management
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4.- ML Architecture & Use-Cases

Should the NMRG work on use-cases and/or defining a 
reference architecture?

22



5.- Distributed AI

• Network is a critical and geographically distributed systems  distributed 
and accountable AI

• Aggregation of knowledge, accumulation of decisions

• Cooperative vs independent vs selfish AI agents (adversarial ML)

• Fixed vs dynamic agent

• Multiple objectives as once

• Monitoring and orchestration of the agents (new models? New protocols? 
New interfaces? How to measure the individual contribution of each agent?)

• …. Again requirements? Architecture?
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AI element – Features Management 
framework
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AI element

Features 
management 
 framework

• Performance
• Testing
• Accountability
• Explainability
• Benchmarking
• Robustness



Manage the interplay between AI elements
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5.- Distributed AI

Should the NMRG work on defining distributed AI for 
networks?
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Open mic discussion
Should the NMRG work on: 
1. providing guidelines or mechanisms to represent common network 

parameters? 
2. providing guidelines and help producing reference datasets and 

benchmarks?
3. providing guidelines, mechanisms, architectures to support 

accountability?
4. use-cases and/or defining a reference network AI/ML architecture?
5. coordination of distributed learning agents, federated learning? 
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