20 Years
Network Management Research Group (NMRG)

Jürgen Schönwälder (1999-2011)
Olivier Festor (2011-2015)
Lisandro Zambenedetti Granville (2011-2018)
Laurent Ciavaglia (2015-)
51 NMRG Meetings, 8 RFCs Published

- RFC 3430: SNMP over TCP
 (Mar 1999 - Dec 2002)
- RFC 3434: On the Difference between Information Models and Data Models
 (Jul 2002 - Jan 2003)
- RFC 3780: SMIng - Next Generation Structure of Management Information
 (Jun 1999 - May 2004)
- RFC 3781: SMIng Mappings to SNMP
 (Jun 1999 - May 2004)
- RFC 5345: SNMP Trace Formats
 (May 2006 - Oct 2008)
- RFC 7575: Autonomic Networking: Definitions and Design Goals
 (Dec 2013 - Jun 2015)
- RFC 7576: General Gap Analysis for Autonomic Networking
 (Apr 2014 - Jun 2015)
- RFC 8316: Autonomic Networking Use Case for Distributed Detection of SLA Violations
 (Jun 2014 - Feb 2018)
NMRG Timeline

SMING WG
EOS WG

NMRG

Juergen

Lisandro
Olivier
Laurent

RFC 3430
RFC 3444
RFC 3780, RFC 3781
RFC 5345
RFC 7575
RFC 7576
RFC 8316

ANIMA WG
Network Management 20 Years Ago

• Policy-based management (COPS, COPS-PR, SPPI)
• Directory-enabled networks (DEN)
• Policy information models (DMTF/IETF)
• Limitations of SNMP/SMIv2 were obvious
• SNMP technology evolution appeared to be deadlocked
• Experiments with “web-based” management protocols
 • use HTTP instead of SNMP
 • pushing data instead of polling data
 • technology fragmentation (WebServices, SOAP, BEEP, WBEM, ...)
• Networking devices mostly closed boxes with proprietary CLIs
• Technology made robust automation difficult and expensive for operators
Meeting in Lausanne

• Meeting in Lausanne in November 1998 gave birth to the idea to propose a research group in the IRTF

• Lausanne meeting participants:
 • Aiko Pras (University of Twente)
 • Luca Deri (University of Pisa)
 • Ron Sprenkels (University of Twente)
 • Jean-Philippe Martin-Flatin (Swiss Federal Institute of Technology)
 • Bert Wijnen (IBM T.J. Watson Research, IETF AD)

• NMRG approved on March 14th 1999 by the IRTF chair Abel Weinrib (who soon afterwards stepped down).
Phase 1: management technology

• Goal #1: avoid fragmented and overlapping data models
 • integrate SMIv2, SPPI, ... into SMIng, a protocol neutral modeling language
 • NMRG effort became a working group (SMIng)
 • working group managed to agree on objectives but not on a solution

• Goal #2: evolve the SNMP framework
 • structured data and not just flat tables
 • more efficient protocol primitives (getsubtree, filtering, compression, ...)
 • effort became a working group (EOS = Evolution of SNMP)
 • working group failed to reach consensus on anything (EOS = End of SNMP)

• Goal #3: collect data how SNMP is used in real networks
 • provide evidence for the folklore (that was sometimes disputed)
 • created tools and data exchange formats for SNMP traces
Phase 2: autonomic network management

• Goal #1: Common understanding, gap analysis, use cases
 • Series of meetings at NMRG:
 • Gap analysis, definitions, network configuration, bootstrapping trust, P2P detection of SLA violations, Lessons learned, Real world experiences...
 • RFC 7575 and RFC 7576
 • UCAN BoF, ANIMA WG

• Goal #2: Autonomics 3.0
 • New application areas: 5G, IoT, Smart X: factory, city...
 • Highly-virtualized, programmable infrastructures
 • Network automation “mega” trend, self-driving networks, insight-driven networks
 • New wave of AI/ML I-D: [draft-pedro-nmrg-anticipated-adaptation-02]
 • Better link with real-world operations and needs: NANOG, RIPE, SRE/NRE
 • Effective deployment: reasons for lack of wide-scale deployment?
Phase 3: intent, machine learning, ...

• Goal #1: Intent as a means for better usability and manageability
 • Abstractions and mechanisms
 • Transfer of knowledge and reasoning from human to machines
 • Higher degree of flexibility, adaptation... and user reward / incentive...

• Goal #2: Use of AI techniques for network management
 • Not new... but new techniques and capabilities
 • DNN, GNN, DRL, federating learning...
 • Data explosion, computing power, storage capacity, data processing techniques...
 • Challenges: beyond “ML hammer” to solve all “network nail problems”
 • Integration of AI/ML in-for Networks
 • Network specific AI/ML
Future of Network Management...

• Networks and Network Management have changed a lot in 20 years
• NMRG adaptation over time to address the changes (phases)

• Difficult to “predict” what future networks will be... however, necessary to think about:
 - What networks are today / near future
 - How they are designed, deployed, operated
 - What are the key (research) problems / challenges
 - Is network management the right “approach”