A Secure Selection and Filtering Mechanism for the Network Time Protocol Version 4

draft-schiff-ntp-chronos-02

Neta Rozen Schiff, Danny Dolev, Tal Mizrahi, Michael Schapira
Reminder: Threat Model

The attacker:

- Controls a large fraction of the NTP servers in the pool (say, \(\frac{1}{4} \))
- Capable of both deciding the content of NTP responses and timing when responses arrive at the client
- Malicious
Reminder: Chronos Architecture
Chronos’ design combines several ingredients:

• **Rely on many NTP servers**
 - Generate a large server pool (hundreds) per client
 - E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
 - Sets a very high threshold for a MitM attacker

• **Query few servers**
 - Randomly query a small fraction of the servers in the pool (e.g., 10-20)
 - Avoids overloading NTP servers

• **Smart filtering**
 - Remove outliers via a technique used in approximate agreement algorithms
 - Limits the MitM attacker’s ability to contaminate the chosen time samples
Chronos and NTPd

• Chronos compared to NTPv4:
 • Greater variety of sampled servers over time
 • Avoids (NTPv4) source quality filters
 • Provable security guarantees

• Possible adverse effects on precision and accuracy.
New in draft 002: Precision Evaluation

• We evaluated Chronos precision in different locations in Europe and US.

• Preliminary results:
 • Chronos has fair precision, up to several ms from NTP
 • Chronos updates are close on average to NTP (several ms gap)

• We considered smoothing mechanisms in order to improve Chronos’ precision
New in draft 002: Smoothing algorithms for Chronos

• Two smoothing mechanism were tested:

 • Return the offset with minimum value unless its distance from the average offset is larger than a predefined value. Yielded improvements.

 • Use the same set of servers as in the previous sample, unless the difference between their offset and the offset of new servers is larger than a predefined value. Didn’t yield a significant improvement.
Average offsets and derivatives

• Chronos usually has more fluctuations compared to NTP, when not under attack

• The smoothing algorithm mitigates these fluctuations and leads to a reduction in the offsets (in absolute values).

• We verified this on several locations:
Average offsets and derivatives

• Chronos usually has more fluctuations compared to NTP, when not under attack.
• The smoothing algorithm mitigates these fluctuations and leads to a reduction in the offsets (in absolute values).
• We verified this on several locations:
Average offsets and derivatives

- Chronos usually has more fluctuations compared to NTP, when not under attack.
- The smoothing algorithm mitigates these fluctuations and leads to a reduction in the offsets (in absolute values).
- We verified this on several locations:

![Graph showing average offsets and derivatives for NTP, Chronos, and Chronos with smoothing (chronos_s).]
Average offsets and derivatives

• Chronos usually has more fluctuations compared to NTP, when not under attack.
• The smoothing algorithm mitigates these fluctuations and leads to a reduction in the offsets (in absolute values).
• We verified this on several locations:
Average offsets and derivatives

• Chronos usually has more fluctuations compared to NTP, when not under attack

• The smoothing algorithm mitigates these fluctuations and leads to a reduction in the offsets (in absolute values).

• We verified this on several locations:
Preliminary results under attack

• Attack type: **rapidly** increasing shift + fake stratum 1
• Both Chronos and NTP remain accurate
Preliminary results *under attack* – cont.

- Attack type: *slowly* increasing shift + fake stratum 1
- Chronos precision remains while NTP is shifted
Conclusion

- We tested POC Chronos implementation under normal scenarios and under attack.
- Chronos precision is closer to NTP than expected (several ms instead of $w=25\text{ms}$), while the smoothing algorithm yields even better results.
- Chronos is secure even facing slowly increasing shift, while NTP isn’t. Smoothing didn’t affect Chronos’ security.
- We are continuing to evaluate Chronos's performance and security for different attack strategies and at different locations.