
Random Linear Network Coding (RLNC)-Based Symbol Representation

draft-heide-nwcrg-rlnc-background-00

draft-heide-nwcrg-rlnc-01

IETF/IRTF 104, NWCRG
March 2019, Prague

Janus Heide (Steinwurf)
Shirley Shi, Kerim Fouli, Muriel Médard (Code On Network Coding)

Vince Chook (Inmarsat)



Agenda

1. Current Version: Changes with respect to draft-heide-nwcrg-rlnc-00

○ Splitting draft-heide-nwcrg-rlnc-background-00 and draft-heide-nwcrg-rlnc-01

○ Scope

○ New Definitions

○ New Sections

2. Next version: Future modifications

○ Comments from the email list

2



Current Version: Overview of Changes

● General background informational on RLNC

● Symbol Representation as a standardization target

draft-heide-nwcrg-rlnc-background-00

● Symbol Representation Specification

● Definition of “Symbol Representation”

● New figures (32-bit template)

draft-heide-nwcrg-rlnc-01

#ThanksVincent

3



Current Version: Symbol Representation

● “Symbol representation specifies the format of the symbol-carrying data unit that is to be coded, 

recoded, and decoded. In other words, symbol representation defines the format of the coding-layer 

data unit, including header format and symbol concatenation.”

Spelling Out Assumed Definitions

draft-heide-nwcrg-rlnc-background-00

draft-heide-nwcrg-rlnc-01

● “Symbol representation specifies the format of the symbol-carrying data unit that is to be used in 

network coding operations, including header format and symbol concatenation.”

4



Standardizing Symbol Representation

● Standardization is needed due to the flexibility of RLNC

● RLNC: dynamic structure, highly reconfigurable

○ Flexible coefficient location (Clustered, Indexed)

○ Dynamic number of coefficients / symbols

○ Flexible symbol size (Fragmentation, Padding, Encapsulation)

○ Flexible field (Coding complexity, Device capabilities)

Flexibility as an argument for standardization 

5



Standardizing Symbol Representation

Network operations may be affected by symbol representation

● Example: Fragmentation

● Known coefficients

○ Can recode fragments

● Unknown coefficients

(e.g., pre-coded or hidden)

○ Must use new coding layer

Important for Network Operations

C D1 D2

C D1

C D2

(a) Code-aware fragmentation 

D1 D2

D1

D2

(b) Conventional fragmentation 

6



Standardizing Symbol Representation

● Architecture: 

Layered architecture, Coding 

architecture

(e.g., Encapsulation, Routing)

● Topology: 

Logical (coding) topology

(e.g., no recoding if coefficients are 

not explicit)

● Protocol

(e.g., Generation vs sliding window)

Important Standardization Target

Protocol

Symbol
Representation

7



Next Version: Overview of Suggested Changes

● More definitions

● Correcting networking terminology

● Trade-offs related to coding parameters

● Security section 

draft-heide-nwcrg-rlnc-background-00

● Clarify definitions

draft-heide-nwcrg-rlnc-01

#ThanksSalvatore

#ThanksDave

8



Next Version: Definitions

● Correcting networking terminology

○ “Connection”

● Clarify a number of terms:

○ “Field elements”: communication/information theoretic “symbols”

○ “Symbol”: array of field elements, “coding data unit”

○ “Raw data”: application data, “uncoded” / “systematic” / “raw” symbols

○ “Representation”: what goes on the wire

○ “Coding Layer”: new vs. current coding layer

○ “Coding Vector” (see next slide)

○ “Hidden” Coefficients (see Security notes below)

● Link / refer to taxonomy draft

Clarifying Assumed Definitions

9



Coded Symbol

First Symbol

Next Version: Coding Vector

● “Raw” Vector

○ Mathematical/full vector of coefficients

○ “Yields coded symbol when multiplied with 

symbol matrix”

● Different from representation 

(i.e., “what is sent on the wire”)

● Representation requires

○ Coefficient values

○ Symbol mapping

● Examples of representations

○ Raw vector (useful in dense coding)

○ Coefficient values + symbol indices (sparser codes)

○ Seed 

Spelling Out Assumed Definitions

𝑐1 … 𝑐𝑆 ×

𝑒11 ⋯ 𝑒1𝑁
⋮ ⋱ ⋮
𝑒𝑆1 ⋯ 𝑒𝑆𝑁

= 𝑒1 … 𝑒𝑁

Coding Vector

Symbol Matrix

(Generation) Field Element

10



Next Version: Protocol Trade-offs

● Multiple trade-offs related to coding parameters

● Fundamental trade-offs

○ Field size: coding complexity, code diversity (linear dependence), required redundancy

○ Symbol size

○ Generation / window / block size: latency, throughput, redundancy granularity

● Application-related trade-offs (optional)

○ Block code vs. sliding window

○ Systematic vs. full coding

○ Sparse vs. dense coding

○ Feedback vs. no feedback

Emphasize fundamental trade-offs

11



Next Version: Security

● Initial assumption: operating inside the “coding layer”

○ Focus on coding operations, erasure correction, performance enhancement

○ Security provided by other layers

● Network coding operates by allowing mixing of data

● What are the security consequences of such mixtures?

● Three aspects:

○ Data hiding

○ Byzantine or pollution attacks – detection and correction

○ Verification

Updating Security Section

12



Next Version: Other Suggestions

● Looking into incoming suggestions

○ Adding references

○ “Encoder Rank”

13



Thanks for the attention
Questions, Comments, Suggestions?



15

Content inaccessible without coefficients

• Enforce selective access to broadcast data

• e.g., protect multi-resolution video layers

Encrypt coefficients instead of payload



16

Content distribution of large files

• Use network coding to increase the efficiency of content distribution in a 
P2P cooperative architecture.
– Instead of storing pieces on servers, store random linear combination of the 

pieces on servers.

– Clients also generate random 
linear combination of the 
pieces they have 
received to 
send out.

– When a client has accumulated 
enough degrees of freedom, 
decode to obtain the 
whole file.

Source

Peer A Peer E

Peer D

Peer C

Peer B

P1 P2 P3

A2

A1

A3

a1 P1+a2P2+a3P3

D1

B1

E1

E2

d1 A1+d2A2



17

Problem

• A malicious user can send packets with valid linear combination in the header, but garbage in the 
payload.

• The pollution of packets spreads quickly.

Solution

• Use homomorphic signature scheme 
– Compute file signature at source

– Include in packets (use public key)

– Verify that packet is valid linear combination (polynomial hash function)

• Intermediate nodes drop contaminated packets 

Features

• No need to decode

• No need to contact source

• No need to retransmit contaminated data

• Low overhead

• Finding packet satisfying hash function is hard (= discrete logarithm)

• Packet- vs. block-level detection of pollution attacks

Detecting and Eliminating Pollution Attacks


