QUIC-FEC: Adding Forward Erasure
Correction to QUIC

Impementation and experiments

Francois Michel, Quentin De Coninck, Olivier Bonaventure
March 28, 2019

UCLouvain, Louvain-la-Neuve, Belgium

QUIC: Reliable, stream based transport protocol

Provides reliable, encrypted and authenticated transport

e Provides stream multiplexing to avoid head-of-line blocking

The reliable transport is provided using retransmissions

FEC was part of the early versions of QUIC. It has now been
postponed.

QUIC packets

QUIC header

QUIC frames

Figure 1: A QUIC packet is a container for frames.

QUIC packets

QUIC header
ACK frame

Stream frame (Stream id=x)

Stream frame (Stream id=y)

Figure 2: Stream frames contain user data, ACK frames contain SACK

Our work with QUIC and FEC

draft-swett-nwcrg-coding-for-quic already proposes a design for
QUIC+FEC<. We worked on a design and implementation of
QUICHFEC concurrently to the draft elaboration.

e First implementation using quic-go (Google-QUIC)
e Second implementation using picoquic (IETF-QUIC, draft
14)
Some of our choices differ from the current NWCRG draft. Let's

discuss these points.

Disclaimer: some frame formats will be shown. We are only
presenting our implementations, not proposing them as a draft.

What to protect - draft-swett-nwcrg-coding-for-quic

Protect stream chunks of fixed size E.

|< -- Frame 1 -- >< ----- Frame | source symbols @, 1, 2, 3
+ommm +--mm - - e - +

| 2 ----- >< --- Frame 3 -- »>< -| source symbols 4, 5, 6, 7
+ommm +--mm - R ik T +

| Frame 4 - >< -F5- >| source symbols 8, 9 and 1@
Hommmmo- tommm - +--- -4 (incomplete)

Figure 2: Example of source symbol mapping, when the E value is
relatively small.

draft-swett-nwcrg-coding-for-quic - Pros

Protect stream chunks of fixed size E.

e No signaling needed to announce the source symbols

e No control overhead. The source symbols only contain stream
data (no stream frame header, ...)

Protecting a packet - Our approach

Our implementation(s) have been developed in parallel to the
draft. Our work is highly inspired by FECFRAME (RFC 6363)

We currently protect the frames transported in packets.

Packet header

Source symbol

Figure 3: A source symbol in a QUIC packet.

Our approach - Pros

e No fixed source symbols size is required
e QUIC naturally handles padding: adding zero-padding to a
source symbol is identical to adding PADDING frames.
e | The padding does not need to be effectively sent !
e Solves the silent-period problem: we don't need to fill source
symbols with user data to protect them

e Solves the problem of source symbols spanning two different

packets
< -E- > < -E- > < -E- > < -E- >
R teomem o H+o-mmmm - R +
|< -- Frame 1 -- >< ----- Frame | source symbols 0, 1, 2, 3
R R e oo m - +
| 2 ----- >< --- Frame 3 -- »>< -| source symbols 4, 5, 6, 7
B s T R e s T +
| Frame 4 - >< —F5 >| source symbols 8, 9 and 10
+o-- oo R + (incomplete)

Figure 2: Example of source symbol mapping, when the E value is
relatively small.

Our approach - Pros

e We can protect more than just STREAM data.
e Flow control frames ?
e Future DATAGRAM/MP/UNRELIABLE STREAM frames ?

e (The server and client can agree on which frames to protect
inside a packet and filter-out non-critical frames from the
source symbols)

Our approach - Cons

e Need explicit signalling to identify the source symbols

e Add a new frame in the packet to protect ? (our approach in
[ETF-QUIC)

Frame type byte (i)

Source FEC Payload ID (i)

Figure 4: The SFPID (Source FEC Payload ID) frame format.
The Source FEC Payload ID field is opaque (chosen by the
FEC Scheme).

10

Our approach - Cons

e Increased overhead :'(

e We protect the frames and their header too

e If a protected packet has the MTU size, the repair
symbols won’t likely fit into one packet !

e In our implementation, we slightly restrict the size of a packet
payload to ensure the repair symbols to fit into a single packet.

11

Sending the repair symbols

Similarly to draft-swett-nwcrg-coding-for-quic, we add a frame to
transport repair symbols, the FEC frame.

0x0a Data Length (15) F| Offset (8)
Repair FEC Payload ID (64)
N.S.S.(8) | N.R.S.(8)

Repair Symbol Payload

Figure 5: Wire format of a FEC frame. The Repair FEC Payload ID field
is opaque to the protocol and is populated by the underlying FEC
Scheme.

12

Explicitly signalling a packet recovery

e ACKing a recovered packet could send a confusing signal to
the sender: if the loss is due to congestion, the congestion
window won't be adapted

e Not ACKing a recovered packet would lead to a
retransmission of its content

e We propose to explicitly signal that a packet has been
recovered through a dedicated frame (the RECOVERED
frame)

e Currently, identical format to an ACK frame but announces
which are the recovered packets

13

Some results of our implementations

e Simple request-response use-case with different file sizes,
using Mininet
e We use a seeded loss generator

e Experiment parameters based on in-flight communications?

(high delays, high loss rate)
e Still some non-determinism in the experiments (quic-go uses
several threads)

!Results based on a study of Rula et al.
http://www.cs.northwestern.edu/~jpr123/papers/www-flight.pdf

14

http://www.cs.northwestern.edu/~jpr123/papers/www-flight.pdf

Some results of our implementations

(30, 20) Reed-Solomon code (10 repair symbols for 20 source

symbols)
1.0 prm——
?’ J 1kB
) . 10kB
L N
8 0.5 - »] x 50kB
h o 1MB
./f’ :u
00] |/d T - T
0.1 0.5 1 2

QUIC_FEC/QUIC

10

5

Some results of our implementations

Small HTTP responses are highly impacted by tail losses. FEC can
help for that kind of request-response use-cases

1.0 A o —
?’ - = 1kB
} 10kB
L
=) . 0 — - 50kB
5 0.5 I‘
1
¥
0'0- |J‘ T T
0.1 0.5 1 2 10

QUIC_FEC/QUIC

5

Some results of our implementations

The impact of a tail loss on a larger transfer is small compared to
the total time needed to transfer the additional redundancy

1.0 A 5t
5 ...+ 1MB
.
5 0.5 1 :
0.0 A ! = .
0.1 0.5 1 2 10

QUIC_FEC/QUIC

5

Only protecting the end of the download

e Some early results using picoquic, only protecting the end of
the download, to reduce the negative impact of redundancy

e The quic-go and picoquic results are not directly
comparable in details: the DCT has been computed slightly
differently, the designs are slightly different, ...

16

Only protecting the end of the download

Only protecting the end of the download reduces the negative

impact of FEC. There is still a small control overhead.

107 - - = 15KB
!': 10 KB
W : — 50 KB
8 0.5 1 ﬁ -:xx 1 MB
./l
0.0 - .ﬂ_-;d_:f.-.‘
0.1 0.5 1 2 10

QUIC_FEC/QUIC

17

Some results of our implementations

We studied how QUICH+FEC behaves when competing with QUIC.

Scenario:

e long bulk download background traffic
e 3 candidates for the background traffic
e Regular QUIC
e QUIC+FEC sending RECOVERED frames when packets are
recovered
e QUICHFEC simply acknowledging the recovered packets
e We study the Download Completion Time for a regular QUIC
foreground traffic when competing with each of these
background traffics
e No medium losses applied to the communication (the
detected losses are all due to congestion)

18

Some results of our implementations

The RECOVERED frames ensure to avoid being unfair when
competing with regular QUIC flows

v

T

c

(]

O

S ——
2

5 _O_ _O_

A 150 A

O

8 % 1
5 100 - : J_I .
o Regular With RF Without RF
]

x

But we may need more experimental results to confirm this 19

Conclusion

e FEC with QUIC also has an interest for short request-response

scenario

e Both stream-chunk-based and packet-based have their
advantages

e The packet-based approach enables the protection of other
frames than STREAM frames (DATAGRAM, ...)

e Recovering packets should be done carefully w.r.t. congestion
control

e We would like to experiment in the wild (also with real-time
use-cases)

20

