

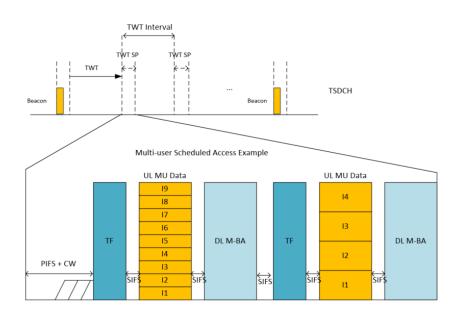
Time-Sensitive applications support in 802.11ax and 802.11be (EHT)

Draft-xxxx

Presenter: Dave Cavalcanti

Authors: Dave Cavalcanti, Ganesh Venkatesan, Carlos Cordeiro

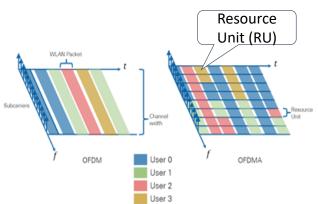
PAW - IETF 104 - Prague


Abstract

- Traditionally, 802.11 has focused on improving peak throughput, capacity, and efficiency
- Emerging applications require accurate time synchronization and predictable (low) latency with high reliability
 - Average latency in 802.11 can be very low, but worst case latency, jitter and reliability can vary, mainly due to congestion
- This presentation describes recent advances in 802.11 standards to address timesensitive networking (TSN) and real-time applications (RTA)
 - Latency and reliability enhancements in 802.11ax
 - Support for TSN/RTA in next generation 802.11be (EHT Extreme High Throughput)

New capabilities to control latency in 802.11ax

• Trigger based Multi-User (MU) OFMDA access enables centralized scheduling for DL/UL

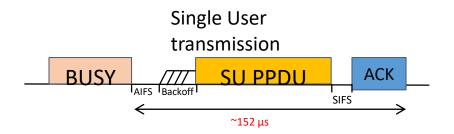


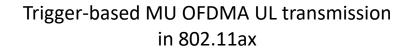
Centralized scheduling

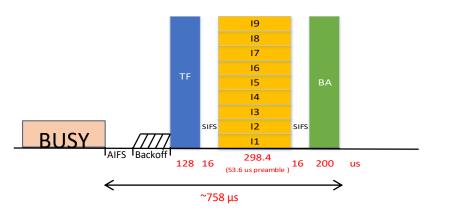
- STAs wait for the trigger frame (avoiding EDCA access)
- Prevent intra-BSS collisions
- Increase network capacity in dense environments

OFDMA

- Reduced PHY overhead
- Flexible RU allocations
- Increase efficiency




• TWT (Target Wait Time) mechanism enables scheduling of TXOPs (TWT SPs) at periodic intervals for groups of STAs



Latency enhancements with 802.11ax

- Example latency with single user transmission
 - Assuming: 802.11ac, 20 MHz BW, AC_VO (default parameters), average backoff (31µs), A-MPDU size (256 bytes), MCS 8 with SISO transmission
 - Single User transmissions from 9 STAs will take \sim 1.3 ms.
- With 802.11ax trigger-based Multi User UL transmissions, the same amount of data will take approximately 758 μs.
- Reliability can be improved by selecting lower MCSs
 - Smart scheduling can also help assign RUs to improve reliability
 - Depending on BW and channel conditions, impact on PPDU tx time can be small (but need to be taken into account for larger packets)

Next generation 802.11be

In the 802.11 Mar 2019 Plenary, the 802.11 working group approved a new PAR for the next generation MAC/PHY amendment to be developed by a new Task Group (TGbe)

The new project was developed by the EHT (Extremely High Throughput) Study Group and it includes throughput, worst case latency and jitter enhancements for time-sensitive applications

- Real-time mobile gaming
- Console gaming
- Industrial automation
- Real-time video
- AR/VR
- Drone control
- Cloud Gaming

Application Requirements for 802.11be

Use cases		Intra BSS latency/ms	Jitter variance/ms [4]	Packet loss	Data rate/ Mbps
Real-time gaming [2]		< 5	< 2	< 0.1 %	< 1
Cloud gaming [15]		< 10	< 2	Near-lossless	<0.1 (Reverse link) >5Mbps (Forward link)
Real-time video [3]		$< 3 \sim 10$	< 1~ 2.5	Near-lossless	$100 \sim 28{,}000$
Robotics and industrial automation [1]	Equipment control	$< 1 \sim 10$	< 0.2~2	Near-lossless	< 1
	Human safety	< 1~ 10	$< 0.2 \sim 2$	Near-lossless	< 1
	Haptic technology	<1~5	<0.2~2	Lossless	<1
	Drone control	<100	<10	Lossless	<1 >100 with video

The 802.11 RTA (Real-Time Applications) Interest Group developed the use cases, requirements and solution directions, which will be considered as part of the 802.11be work.

Potential topics for 802.11be

- Extension of new TSN capabilities (Time-aware shaping, redundancy, pre-emption, ...) to 802.11
- Predictable and efficient medium access
- Reduced PHY overhead and support for time-sensitive small packet transmissions
- Improved management and time-sensitive data coexistence
- Coordination between APs/BSSs to reduce impact of OBSS on latency/reliability

Conclusions

- 802.11ax provides new capabilities to control latency and improve reliability, which can support time-sensitive applications in managed network scenarios
- 802.11be will continue the work to improve throughput, reduce worst latency/jitter to better support time-sensitive applications in 802.11
 - Predictable channel access is one of the key areas for enhancement in 802.11be